Unknown

Dataset Information

0

In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase.


ABSTRACT: NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in ?-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH). Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH) with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS), while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

SUBMITTER: Fernandez-Fernandez AD 

PROVIDER: S-EPMC4789532 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase.

Fernández-Fernández Álvaro D ÁD   Corpas Francisco J FJ  

Scientifica 20160229


NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases,  ...[more]

Similar Datasets

| S-EPMC7214817 | biostudies-literature
| S-EPMC2675582 | biostudies-literature
| S-EPMC4091122 | biostudies-literature
| S-EPMC4262709 | biostudies-literature
| S-EPMC2803859 | biostudies-other
| S-EPMC6356969 | biostudies-literature
| S-EPMC1919378 | biostudies-literature
| S-EPMC6155552 | biostudies-literature
| S-EPMC2939770 | biostudies-literature