Unknown

Dataset Information

0

Surface wave excitations and backflow effect over dense polymer brushes.


ABSTRACT: Polymer brushes are being increasingly used to tailor surface physicochemistry for diverse applications such as wetting, adhesion of biological objects, implantable devices and much more. Here we perform Dissipative Particle Dynamics simulations to study the behaviour of dense polymer brushes under flow in a slit-pore channel. We discover that the system displays flow inversion at the brush interface for several disconnected ranges of the imposed flow. We associate such phenomenon to collective polymer dynamics: a wave propagating on the brush surface. The relation between the wavelength, the amplitude and the propagation speed of the flow-generated wave is consistent with the solution of the Stokes equations when an imposed traveling wave is assumed as the boundary condition (the famous Taylor's swimmer).

SUBMITTER: Biagi S 

PROVIDER: S-EPMC4792148 | biostudies-literature | 2016 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Surface wave excitations and backflow effect over dense polymer brushes.

Biagi Sofia S   Rovigatti Lorenzo L   Sciortino Francesco F   Misbah Chaouqi C  

Scientific reports 20160315


Polymer brushes are being increasingly used to tailor surface physicochemistry for diverse applications such as wetting, adhesion of biological objects, implantable devices and much more. Here we perform Dissipative Particle Dynamics simulations to study the behaviour of dense polymer brushes under flow in a slit-pore channel. We discover that the system displays flow inversion at the brush interface for several disconnected ranges of the imposed flow. We associate such phenomenon to collective  ...[more]

Similar Datasets

| S-EPMC7191748 | biostudies-literature
| S-EPMC7153387 | biostudies-literature
| S-EPMC7580055 | biostudies-literature
| S-EPMC6680766 | biostudies-literature
| S-EPMC5504464 | biostudies-literature
| S-EPMC6892876 | biostudies-literature