Contribution of Population Pharmacokinetics to Dose Optimization of Ganciclovir-Valganciclovir in Solid-Organ Transplant Patients.
Ontology highlight
ABSTRACT: Treatment of solid-organ transplant (SOT) patients with ganciclovir (GCV)-valganciclovir (VGCV) according to the manufacturer's recommendations may result in over- or underexposure. Bayesian prediction based on a population pharmacokinetics model may optimize GCV-VGCV dosing, achieving the area under the curve (AUC) therapeutic target. We conducted a two-arm, randomized, open-label, 40% superiority trial in adult SOT patients receiving GCV-VGCV as prophylaxis or treatment of cytomegalovirus infection. Group A was treated according to the manufacturer's recommendations. For group B, the dosing was adjusted based on target exposures using a Bayesian prediction model (NONMEM). Fifty-three patients were recruited (27 in group A and 26 in group B). About 88.6% of patients in group B and 22.2% in group A reached target AUC, achieving the 40% superiority margin (P< 0.001; 95% confidence interval [CI] difference, 47 to 86%). The time to reach target AUC was significantly longer in group A than in group B (55.9 ± 8.2 versus 15.8 ± 2.3 days,P< 0.001). A shorter time to viral clearance was observed in group B than in group A (12.5 versus 17.6 days;P= 0.125). The incidences of relapse (group A, 66.67%, and group B, 9.01%) and late-onset infection (group A, 36.7%, and group B, 7.7%) were higher in group A. Neutropenia and anemia were related to GCV overexposure. GCV-VCGV dose adjustment based on a population pharmacokinetics Bayesian prediction model optimizes GCV-VGCV exposure. (This study has been registered at ClinicalTrials.gov under registration no. NCT01446445.).
SUBMITTER: Padulles A
PROVIDER: S-EPMC4808182 | biostudies-literature | 2016 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA