Unknown

Dataset Information

0

Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions.


ABSTRACT: Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-L-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.

SUBMITTER: Bong KW 

PROVIDER: S-EPMC4820324 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions.

Bong Ki Wan KW   Kim Jae Jung JJ   Cho Hansang H   Lim Eugene E   Doyle Patrick S PS   Irimia Daniel D  

Langmuir : the ACS journal of surfaces and colloids 20151125 48


Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of aniso  ...[more]

Similar Datasets

| S-EPMC4040147 | biostudies-literature
| S-EPMC2249767 | biostudies-literature
| S-EPMC7096159 | biostudies-literature
| S-EPMC3637725 | biostudies-literature
| S-EPMC6486461 | biostudies-literature
| S-EPMC3169315 | biostudies-literature
| S-EPMC4298722 | biostudies-literature
| S-EPMC9324022 | biostudies-literature
| S-EPMC2553120 | biostudies-literature
| S-EPMC8235110 | biostudies-literature