Unknown

Dataset Information

0

Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption.


ABSTRACT: Ferromagnetism is usually deemed incompatible with superconductivity. Consequently, the coexistence of superconductivity and ferromagnetism is usually observed only in elegantly designed multi-ingredient structures in which the two competing electronic states originate from separate structural components. Here we report the use of surface molecular adsorption to induce ferromagnetism in two-dimensional superconducting NbSe2, representing the freestanding case of the coexistence of superconductivity and ferromagnetism in one two-dimensional nanomaterial. Surface-structural modulation of the ultrathin superconducting NbSe2 by polar reductive hydrazine molecules triggers a slight elongation of the covalent Nb-Se bond, which weakens the covalent interaction and enhances the ionicity of the tetravalent Nb with unpaired electrons, yielding ferromagnetic ordering. The induced ferromagnetic momentum couples with conduction electrons generating unique correlated effects of intrinsic negative magnetoresistance and the Kondo effect. We anticipate that the surface molecular adsorption will be a powerful tool to regulate spin ordering in the two-dimensional paradigm.

SUBMITTER: Zhu X 

PROVIDER: S-EPMC4822027 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption.

Zhu Xiaojiao X   Guo Yuqiao Y   Cheng Hao H   Dai Jun J   An Xingda X   Zhao Jiyin J   Tian Kangzhen K   Wei Shiqiang S   Cheng Zeng Xiao X   Wu Changzheng C   Xie Yi Y  

Nature communications 20160404


Ferromagnetism is usually deemed incompatible with superconductivity. Consequently, the coexistence of superconductivity and ferromagnetism is usually observed only in elegantly designed multi-ingredient structures in which the two competing electronic states originate from separate structural components. Here we report the use of surface molecular adsorption to induce ferromagnetism in two-dimensional superconducting NbSe2, representing the freestanding case of the coexistence of superconductiv  ...[more]

Similar Datasets

| S-EPMC4291556 | biostudies-literature
| S-EPMC5920055 | biostudies-literature
| S-EPMC4974475 | biostudies-literature
| S-EPMC9899283 | biostudies-literature
| S-EPMC7768770 | biostudies-literature
| S-EPMC8072246 | biostudies-literature
| S-EPMC4776102 | biostudies-other
| S-EPMC5725560 | biostudies-literature
| S-EPMC8535790 | biostudies-literature
| S-EPMC5428024 | biostudies-literature