Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition.
Ontology highlight
ABSTRACT: High-pressure Raman spectroscopy and x-ray diffraction of Sb2S3 up to 53?GPa reveals two phase transitions at 5?GPa and 15?GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb2S3 near 5?GPa. Close comparison between Sb2S3 and Sb2Se3 up to 10?GPa reveals a slightly diverse structural behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb2S3 and Sb2Se3 up to 10?GPa, i.e. the absence of an insulator-metal transition in Sb2S3 up to that pressure. Finally, the second high-pressure modification appearing above 15?GPa appears to trigger a structural disorder at ~20?GPa; full decompression from 53?GPa leads to the recovery of an amorphous state.
SUBMITTER: Efthimiopoulos I
PROVIDER: S-EPMC4822153 | biostudies-literature | 2016 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA