Unknown

Dataset Information

0

Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise.


ABSTRACT: Exercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor-negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11-12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression. All statistical tests were two-sided. Exercise statistically significantly reduced tumor growth and was associated with a 1.4-fold increase in apoptosis (sedentary vs exercise: 1544 cells/mm(2), 95% CI = 1223 to 1865 vs 2168 cells/mm(2), 95% CI = 1620 to 2717; P = .048), increased microvessel density (P = .004), vessel maturity (P = .006) and perfusion, and reduced intratumoral hypoxia (P = .012), compared with sedentary controls. We also tested whether exercise could improve chemotherapy (cyclophosphamide) efficacy. Exercise plus chemotherapy prolonged growth delay compared with chemotherapy alone (P < .001) in the orthotopic 4T1 model (n = 17 per group). Exercise is a potential novel adjuvant treatment of breast cancer.

SUBMITTER: Betof AS 

PROVIDER: S-EPMC4822524 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise.

Betof Allison S AS   Lascola Christopher D CD   Weitzel Douglas D   Landon Chelsea C   Scarbrough Peter M PM   Devi Gayathri R GR   Palmer Gregory G   Jones Lee W LW   Dewhirst Mark W MW  

Journal of the National Cancer Institute 20150316 5


Exercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor-negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11-12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantit  ...[more]

Similar Datasets

| S-EPMC6765012 | biostudies-literature
| S-EPMC8012204 | biostudies-literature
| S-EPMC5323166 | biostudies-literature
| S-EPMC4873808 | biostudies-other
| S-EPMC8323471 | biostudies-literature
| S-EPMC3769701 | biostudies-literature
| S-EPMC10110401 | biostudies-literature
| S-EPMC8474256 | biostudies-literature
| S-EPMC7117758 | biostudies-literature
| S-EPMC7596922 | biostudies-literature