Unknown

Dataset Information

0

An IRF5 Decoy Peptide Reduces Myocardial Inflammation and Fibrosis and Improves Endothelial Cell Function in Tight-Skin Mice.


ABSTRACT: Interferon regulatory factor 5 (IRF5) has been called a "master switch" for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IRF5D for recombinant IRF5 to be 3.72 ± 0.74x10-6M. Increasing concentrations of IRF5D (0-100 ?g/mL, 24h) had no significant effect on EC proliferation or apoptosis. Treatment of Tsk/+ mice with IRF5D (1mg/kg/d subcutaneously, 21d) reduced IRF5 and ICAM-1 expression and monocyte/macrophage and neutrophil counts in Tsk/+ hearts compared to expression in hearts from PBS-treated Tsk/+ mice (p<0.05). EC-dependent vasodilatation of facialis arteries isolated from PBS-treated Tsk/+ mice was reduced (~15%). IRF5D treatments (1mg/kg/d, 21d) improved vasodilatation in arteries isolated from Tsk/+ mice nearly 3-fold (~45%, p<0.05), representing nearly 83% of the vasodilatation in arteries isolated from C57Bl/6J mice (~55%). IRF5D (50?g/mL, 24h) reduced nuclear translocation of IRF5 in myocytes cultured on both Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix (p<0.05). These data suggest that IRF5 plays a causal role in inflammation, fibrosis and impaired vascular EC function in Tsk/+ mice and that treatment with IRF5D effectively counters IRF5-dependent mechanisms of inflammation and fibrosis in the myocardium in these mice.

SUBMITTER: Weihrauch D 

PROVIDER: S-EPMC4822818 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

An IRF5 Decoy Peptide Reduces Myocardial Inflammation and Fibrosis and Improves Endothelial Cell Function in Tight-Skin Mice.

Weihrauch Dorothee D   Krolikowski John G JG   Jones Deron W DW   Zaman Tahniyath T   Bamkole Omoshalewa O   Struve Janine J   Pillai Savin S   Pagel Paul S PS   Lohr Nicole L NL   Pritchard Kirkwood A KA  

PloS one 20160406 4


Interferon regulatory factor 5 (IRF5) has been called a "master switch" for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IR  ...[more]

Similar Datasets

| S-EPMC5850145 | biostudies-literature
| S-EPMC5675431 | biostudies-literature
| S-EPMC7188803 | biostudies-literature
| S-EPMC3000293 | biostudies-literature
| S-EPMC1217989 | biostudies-other
| S-EPMC5655747 | biostudies-literature
| S-EPMC1864879 | biostudies-literature
| S-EPMC6297813 | biostudies-literature
| S-EPMC5104489 | biostudies-literature
| S-EPMC8602323 | biostudies-literature