Unknown

Dataset Information

0

Artemin is hypoxia responsive and promotes oncogenicity and increased tumor initiating capacity in hepatocellular carcinoma.


ABSTRACT: Hypoxia has been reported to regulate the cancer stem cell (CSC) population yet the underlying mechanism is poorly characterized. Herein, we show that Artemin (ARTN), a member of the glial cell derived neurotrophic factor family of ligands, is a hypoxia-responsive factor and is essential for hypoxia-induced CSC expansion in hepatocellular carcinoma (HCC). Clinically, elevated expression of ARTN in HCC was associated with larger tumor size, faster relapse and shorter survival. In vitro, HCC cells with forced expression of ARTN exhibited reduced apoptosis, increased proliferation, epithelial-mesenchymal transition (EMT) and enhanced motility. Additionally, ARTN dramatically increased xenograft tumor size and metastasis in vivo. Moreover, ARTN also enhanced tumorsphere formation and the tumor initiating capacity of HCC cells, consequent to expansion of the CD133+ CSC population. ARTN transcription was directly activated by hypoxia-induced factor-1? (HIF-1?) and hypoxia induced ARTN promoted EMT and increased the CSC population via AKT signaling. We herein identify a novel HIF-1?/ARTN axis promoting CSC-like behavior in hypoxic environments which implicates ARTN as a valuable therapeutic target for HCC.

SUBMITTER: Zhang M 

PROVIDER: S-EPMC4823105 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Artemin is hypoxia responsive and promotes oncogenicity and increased tumor initiating capacity in hepatocellular carcinoma.

Zhang Min M   Zhang Weijie W   Wu Zhengsheng Z   Liu Shumin S   Sun Linchong L   Zhong Yanghao Y   Zhang Xiao X   Kong Xiangjun X   Qian Pengxu P   Zhang Huafeng H   Lobie Peter E PE   Zhu Tao T  

Oncotarget 20160101 3


Hypoxia has been reported to regulate the cancer stem cell (CSC) population yet the underlying mechanism is poorly characterized. Herein, we show that Artemin (ARTN), a member of the glial cell derived neurotrophic factor family of ligands, is a hypoxia-responsive factor and is essential for hypoxia-induced CSC expansion in hepatocellular carcinoma (HCC). Clinically, elevated expression of ARTN in HCC was associated with larger tumor size, faster relapse and shorter survival. In vitro, HCC cells  ...[more]

Similar Datasets

| S-EPMC8377398 | biostudies-literature
| S-EPMC5323168 | biostudies-literature
| S-EPMC2671384 | biostudies-literature
| S-EPMC4493986 | biostudies-literature
| S-EPMC6160773 | biostudies-literature
| S-EPMC8087947 | biostudies-literature
| S-EPMC3812270 | biostudies-literature
| S-EPMC4941282 | biostudies-literature
| S-EPMC7982636 | biostudies-literature
| S-EPMC7681097 | biostudies-literature