Unknown

Dataset Information

0

A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China.


ABSTRACT: Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

SUBMITTER: Yang Y 

PROVIDER: S-EPMC4823651 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China.

Yang Yanzheng Y   Zhu Qiuan Q   Peng Changhui C   Wang Han H   Xue Wei W   Lin Guanghui G   Wen Zhongming Z   Chang Jie J   Wang Meng M   Liu Guobin G   Li Shiqing S  

Scientific reports 20160407


Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based o  ...[more]

Similar Datasets

| S-EPMC6640191 | biostudies-literature
| S-EPMC4908390 | biostudies-other
| S-EPMC4021547 | biostudies-literature
| S-EPMC8051819 | biostudies-literature
| S-EPMC9742609 | biostudies-literature
| S-EPMC5319317 | biostudies-literature
| S-EPMC6391447 | biostudies-literature
| S-EPMC4701132 | biostudies-literature
| S-EPMC4523184 | biostudies-literature
| S-EPMC5054395 | biostudies-literature