Project description:IL-17 is a T cell-derived cytokine that may play an important role in the initiation or maintenance of the proinflammatory response. Whereas expression of IL-17 is restricted to activated T cells, the IL-17 receptor is found to be widely expressed, a finding consistent with the pleiotropic activities of IL-17. We have cloned and expressed two novel human cytokines, IL-17B and IL-17C, that are related to IL-17 ( approximately 27% amino acid identity). IL-17B mRNA is expressed in adult pancreas, small intestine, and stomach, whereas IL-17C mRNA is not detected by RNA blot hybridization of several adult tissues. No expression of IL-17B or IL-17C mRNA is found in activated T cells. In a survey of cytokine induction, IL-17B and IL-17C stimulate the release of tumor necrosis factor alpha and IL-1beta from the monocytic cell line, THP-1, whereas IL-17 has only a weak effect in this system. No induction of IL-1alpha, IL-6, IFN-gamma, or granulocyte colony-stimulating factor is found in THP-1 cells. Fluorescence-activated cell sorter analysis shows that IL-17B and IL-17C bind to THP-1 cells. Conversely, IL-17B and IL-17C are not active in an IL-17 assay or the stimulation of IL-6 release from human fibroblasts and do not bind to the human IL-17 receptor extracellular domain. These data show that there is a family of IL-17-related cytokines differing in patterns of expression and proinflammatory responses that may be transduced through a cognate set of cell surface receptors.
Project description:Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine. mRNA-bound Act1 directs formation of three compartmentally distinct RNA-protein complexes (RNPs) that regulate three disparate events in inflammatory-mRNA metabolism: preventing mRNA decay in the nucleus, inhibiting mRNA decapping in P bodies and promoting translation. SBE RNA aptamers decreased IL-17-mediated mRNA stabilization in vitro, IL-17-induced skin inflammation and airway inflammation in a mouse asthma model, thus providing a therapeutic strategy for autoimmune diseases. These results reveal a network in which Act1 assembles RNPs on the 3' UTRs of select mRNAs and consequently controls receptor-mediated mRNA stabilization and translation during inflammation.
Project description:Lower vertebrates have been found to possess genes that have similar homology to both interleukin (IL)-17A and IL-17F, which have been termed IL-17A/F. In fish species, several of these genes can be present, but, to date, very little is known about their functional activity. This article describes the discovery and sequence analysis of a rainbow trout (Oncorhynchus mykiss) IL-17A/F2 molecule and an IL-17RA receptor. In addition, the bioactivity of the trout IL-17A/F2 is investigated for the first time in any species. The predicted IL-17A/F2 and IL-17RA proteins consist of 146 and 966 amino acids (aa), respectively, with both molecules containing conserved family motifs. Expression analysis revealed high constitutive expression of trout IL-17A/F2 in mucosal tissues from healthy fish, suggesting a potential role in mucosal immunity. When the modulation of IL-17A/F2 and IL-17RA in vitro was analyzed, it was observed that the two molecules were similarly affected. The expression of IL-17A/F2 was also induced in head kidney during bacterial, parasitic, and viral infections, revealing a possible function in defense against such pathogens. However, downregulation of IL-17RA was seen in some tissues and infections. The recombinant IL-17A/F2 protein was produced in Escherichia coli and was found to affect the expression of an antimicrobial peptide and the proinflammatory cytokines IL-6 and IL-8 in splenocytes. Consistent with mammalian IL-17 homologues, our expression and bioactivity results imply that trout IL-17A/F2 plays an important role in promoting inflammatory and host innate immune responses directed against different pathogen groups.
Project description:The proinflammatory cytokines IL-17A and IL-17F have a high degree of sequence similarity and share many biological properties. Both have been implicated as factors contributing to the progression of inflammatory and autoimmune diseases. Moreover, reagents that neutralize IL-17A significantly ameliorate disease severity in several mouse models of human disease. IL-17A mediates its effects through interaction with its cognate receptor, the IL-17 receptor (IL-17RA). We report here that the IL-17RA-related molecule, IL-17RC is the receptor for IL-17F. Notably, both IL-17A and IL-17F bind to IL-17RC with high affinity, leading us to suggest that a soluble form of this molecule may serve as an effective therapeutic antagonist of IL-17A and IL-17F. We generated a soluble form of IL-17RC and demonstrate that it effectively blocks binding of both IL-17A and IL-17F, and that it inhibits signaling in response to these cytokines. Collectively, our work indicates that IL-17RC functions as a receptor for both IL-17A and IL-17F and that a soluble version of this protein should be an effective antagonist of IL-17A and IL-17F mediated inflammatory diseases.
Project description:IL-17 cytokines, in particular IL-17A, are critical effectors in psoriasis. Antibodies that block IL-17A are highly efficacious in treating psoriasis. Likewise, disruption of IL-17 cytokines signaling, such as via the loss of the adaptor CIKS/Act1, ameliorates inflammation in mouse models of psoriasis. IL-17A promotes a cascade of effects, including the robust production of IL-19 in both humans and mice. IL-19, along with IL-20 and IL-24, signal via IL-20 receptors and comprise a subgroup within the IL-10 cytokine family. The role of these three cytokines in psoriasis is unresolved. They have been linked to inflammatory processes, including psoriatic pathology, but these cytokines have also been reported to suppress inflammation in other contexts. In this study, we demonstrate that signaling via IL-20 receptors, including in response to IL-19, delimited aspects of imiquimod-induced psoriatic inflammation. IL-20 receptor signaling suppressed the dermal production of the CCL2 chemokine and thereby reduced CCL-2-driven infiltration of inflammatory cells into the dermis, including IL-17A-producing γδT cells. This constitutes a negative feedback, since IL-17A strongly induces IL-19 in keratinocytes. The effects of IL-17 cytokines in this inflammatory setting are dynamic; they are central to the development of both dermal and epidermal hallmarks of psoriasis but also initiate a path to mitigate inflammatory damage.
Project description:BackgroundThe interleukin (IL)-23/IL-17 immune axis is of central importance in psoriasis. However, the impact of IL-17 family cytokines other than IL-17A in psoriasis has not been fully established.ObjectivesTo elucidate the contribution of IL-17 family cytokines in psoriasis.MethodsTo address the expression and localization of IL-17 family cytokines, lesional and nonlesional skin samples from patients with psoriasis were analysed by several complementary methods, including quantitative polymerase chain reaction, immunoassays, in situ hybridization and immunohistochemistry. Mechanistic studies assessing the functional activity of IL-17 family cytokines were performed using ex vivo cultured human skin biopsies and primary human keratinocytes.ResultsWe demonstrated that IL-17A, IL-17F, IL-17A/F and IL-17C are expressed at increased levels in psoriasis lesional skin and induce overlapping gene expression responses in ex vivo cultured human skin that correlate with the transcriptomic signature of psoriasis skin. Furthermore, we showed that brodalumab, in contrast to ixekizumab, normalizes gene expression responses induced by the combination of IL-17A, IL-17F, IL-17A/F and IL-17C in human keratinocytes.ConclusionsSeveral IL-17 ligands signalling through IL-17RA are overexpressed in psoriasis skin and induce similar psoriasis-related inflammatory pathways demonstrating their relevance in relation to therapeutic intervention in psoriasis.
Project description:IL-17 cytokines play a crucial role in a variety of inflammatory and autoimmune diseases. They signal through heterodimeric receptor complexes consisting of members of IL-17R family. A unique intracellular signaling domain was identified within all IL-17Rs, termed similar expression to fibroblast growth factor genes and IL-17R (SEFIR). SEFIR is also found in NF-?B activator 1 (Act1), an E3 ubiquitin ligase, and mediates its recruitment to IL-17Rs. In this study, to our knowledge, we report the structure of the first SEFIR domain from IL-17RB at 1.8Å resolution. SEFIR displays a five-stranded parallel ?-sheet that is wrapped by six helices. Site-directed mutagenesis on IL-17RB identified helix ?C as being critical for its interaction with Act1 and IL-25 (IL-17E) signaling. Using the current SEFIR structure as a template, the key functional residues in Act1 are also mapped as part of helix ?C, which is conserved in IL-17RA and RC, suggesting this helix as a common structural signature for heterotypic SEFIR-SEFIR association. In contrast, helix ?B' is important for homodimerization of Act1, implicating a dual ligand-binding model for SEFIR domain, with distinct structural motifs participating in either homotypic or heterotypic interactions. Furthermore, although the IL-17RB-SEFIR structure resembles closest to the Toll/IL-1R domain of TLR10 with low sequence homology, substantial differences were observed at helices ?C, ?D, and DD' loop. To our knowledge, this study provides the first structural view of the IL-17R intracellular signaling, unraveling the mechanism for the specificity of SEFIR versus Toll/IL-1R domain in their respective signaling pathways.
Project description:Interleukin-17A (IL-17A), the hallmark cytokine of the newly defined T helper 17 (T(H)17) cell subset, has important roles in protecting the host against extracellular pathogens, but also promotes inflammatory pathology in autoimmune disease. IL-17A and its receptor (IL-17RA) are the founding members of a newly described family of cytokines and receptors that have unique structural features which distinguish them from other cytokine families. Research defining the signal transduction pathways induced by IL-17R family cytokines has lagged behind that of other cytokine families, but studies in the past 2 years have begun to delineate unusual functional motifs and new proximal signalling mediators used by the IL-17R family to mediate downstream events.
Project description:IL-23 plays an important role in autoimmune tissue inflammation and induces the generation of not fully characterized effector cells that mediate protection against pathogens. In this paper, we established the essential role of IL-23R in the host response against intracellular pathogens. IL-23 was critical for the expansion or maintenance of gammadelta and double negative (DN) alphabeta T cells. These cells were rapidly recruited to the site of infection and produced large amounts of IL-17, IFN-gamma, and TNF-alpha. Notably, DN T cells transferred into L. monocytogenes-infected RAG2(-/-) mice prevented bacterial growth, confirming their protective role against intracellular pathogens. Our results show that IL-23 regulates the function of IL-17-producing gammadelta and DN T cells, two essential components of the early protective immune response directed against intracellular pathogens.
Project description:IL-17 and its receptor are founding members of a novel inflammatory cytokine family. To date, only one IL-17 receptor subunit has been identified, termed IL-17RA. All known cytokine receptors consist of a complex of multiple subunits. Although IL-17-family cytokines exist as homodimers, the configuration and stoichiometry of the IL-17R complex remain unknown. We used fluorescence resonance energy transfer (FRET) to determine whether IL-17RA subunits multimerize, and, if so, whether they are preassembled in the plasma membrane. HEK293 cells coexpressing IL-17RA fused to cyan or yellow fluorescent proteins (CFP or YFP) were used to evaluate FRET before and after IL-17A or IL-17F treatment. In the absence of ligand, IL-17RA molecules exhibited significant specific FRET efficiency, demonstrating that they exist in a multimeric, preformed receptor complex. Strikingly, treatment with IL-17A or IL-17F markedly reduced FRET efficiency, suggesting that IL-17RA subunits within the IL-17R complex undergo a conformational change upon ligand binding.