Unknown

Dataset Information

0

A Highly Reversible Room-Temperature Sodium Metal Anode.


ABSTRACT: Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.

SUBMITTER: Seh ZW 

PROVIDER: S-EPMC4827673 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Highly Reversible Room-Temperature Sodium Metal Anode.

Seh Zhi Wei ZW   Sun Jie J   Sun Yongming Y   Cui Yi Y  

ACS central science 20151102 8


Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in gl  ...[more]

Similar Datasets

| S-EPMC5379181 | biostudies-literature
| S-EPMC4686773 | biostudies-literature
| S-EPMC6767169 | biostudies-literature
| S-EPMC3818659 | biostudies-literature
| S-EPMC8746264 | biostudies-literature
| S-EPMC4906167 | biostudies-literature
| S-EPMC6178361 | biostudies-literature
| S-EPMC5906683 | biostudies-literature
| S-EPMC4000167 | biostudies-literature
| S-EPMC5510961 | biostudies-literature