Unknown

Dataset Information

0

Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity.


ABSTRACT: Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy.

SUBMITTER: Hodille E 

PROVIDER: S-EPMC4832122 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity.

Hodille Elisabeth E   Alekseeva Ludmila L   Berkova Nadia N   Serrier Asma A   Badiou Cedric C   Gilquin Benoit B   Brun Virginie V   Vandenesch François F   Terman David S DS   Lina Gerard G  

Frontiers in microbiology 20160415


Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of hu  ...[more]

Similar Datasets

| S-EPMC5030291 | biostudies-literature
| S-EPMC5683028 | biostudies-literature
| S-EPMC6099397 | biostudies-literature
| S-EPMC4003168 | biostudies-literature
| S-EPMC9414061 | biostudies-literature
| S-EPMC162247 | biostudies-literature
| S-EPMC4557339 | biostudies-literature
| S-EPMC5293744 | biostudies-literature
2009-04-09 | GSE15571 | GEO
| S-EPMC4926151 | biostudies-literature