Unknown

Dataset Information

0

An integrated framework for targeting functional networks via transcranial magnetic stimulation.


ABSTRACT: Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue.

SUBMITTER: Opitz A 

PROVIDER: S-EPMC4836057 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

An integrated framework for targeting functional networks via transcranial magnetic stimulation.

Opitz Alexander A   Fox Michael D MD   Craddock R Cameron RC   Colcombe Stan S   Milham Michael P MP  

NeuroImage 20151119


Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with res  ...[more]

Similar Datasets

| S-EPMC3938327 | biostudies-literature
| S-EPMC7328938 | biostudies-literature