Unknown

Dataset Information

0

Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools.


ABSTRACT: One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be encoded by the genome. The aim of this study was to assess and compare the ability of the bioinformatics approaches and tools to assemble, quantify and detect differentially expressed transcripts using RNA-Seq data, in a controlled experiment. To this end, in vitro synthesized mouse spike-in control transcripts were added to the total RNA of differentiating mouse embryonic bodies, and their expression patterns were measured. This novel approach was used to assess the accuracy of the tools, as established by comparing the observed results versus the results expected of the mouse controlled spiked-in transcripts. We found that detection of differential expression at the gene level is adequate, yet on the transcript-isoform level, all tools tested lacked accuracy and precision.

SUBMITTER: Leshkowitz D 

PROVIDER: S-EPMC4839710 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools.

Leshkowitz Dena D   Feldmesser Ester E   Friedlander Gilgi G   Jona Ghil G   Ainbinder Elena E   Parmet Yisrael Y   Horn-Saban Shirley S  

PloS one 20160421 4


One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be encoded by the genome. The aim of this study was t  ...[more]

Similar Datasets

| S-EPMC3166838 | biostudies-literature
| S-EPMC7192453 | biostudies-literature
| S-EPMC5053979 | biostudies-literature
| S-EPMC5003039 | biostudies-literature
| S-EPMC4726298 | biostudies-literature
| S-EPMC4985018 | biostudies-literature
| S-EPMC4995400 | biostudies-literature
| S-EPMC4121153 | biostudies-literature
| S-EPMC4538800 | biostudies-literature
| S-EPMC6742427 | biostudies-literature