Project description:Norovirus infections are a significant health and economic burden globally, accounting for hundreds of millions of cases of acute gastroenteritis every year. In the absence of an approved norovirus vaccine, there is an urgent need to develop antivirals to treat chronic infections and provide prophylactic therapy to limit viral spread during epidemics and pandemics. Toll-like receptor (TLR) agonists have been explored widely for their antiviral potential, and several are progressing through clinical trials for the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) and as adjuvants for norovirus viruslike particle (VLP) vaccines. However, norovirus therapies in development are largely direct-acting antivirals (DAAs) with fewer compounds that target the host. Our aim was to assess the antiviral potential of TLR7 agonist immunomodulators on norovirus infection using the murine norovirus (MNV) and human Norwalk replicon models. TLR7 agonists R-848, Gardiquimod, GS-9620, R-837, and loxoribine were screened using a plaque reduction assay, and each displayed inhibition of MNV replication (50% effective concentrations [EC50s], 23.5 nM, 134.4 nM, 0.59 ?M, 1.5 ?M, and 79.4 ?M, respectively). RNA sequencing of TLR7-stimulated cells revealed a predominant upregulation of innate immune response genes and interferon (IFN)-stimulated genes (ISGs) that are known to drive an antiviral state. Furthermore, the combination of R-848 and the nucleoside analogue (NA) 2'C-methylcytidine elicited a synergistic antiviral effect against MNV, demonstrating that combinational therapy of host modulators and DAAs might be used to reduce drug cytotoxicity. In summary, we have identified that TLR7 agonists display potent inhibition of norovirus replication and are a therapeutic option to combat norovirus infections.
Project description:BackgroundNorovirus is a leading cause of acute gastroenteritis (AGE). Noroviruses bind to gut histo-blood group antigens (HBGAs), but only 70%-80% of individuals have a functional copy of the FUT2 ("secretor") gene required for gut HBGA expression; these individuals are known as "secretors." Susceptibility to some noroviruses depends on FUT2 secretor status, but the population impact of this association is not established.MethodsFrom December 2011 to November 2012, active AGE surveillance was performed at 6 geographically diverse pediatric sites in the United States. Case patients aged <5 years were recruited from emergency departments and inpatient units; age-matched healthy controls were recruited at well-child visits. Salivary DNA was collected to determine secretor status and genetic ancestry. Stool was tested for norovirus by real-time reverse transcription polymerase chain reaction. Norovirus genotype was then determined by sequencing.ResultsNorovirus was detected in 302 of 1465 (21%) AGE cases and 52 of 826 (6%) healthy controls. Norovirus AGE cases were 2.8-fold more likely than norovirus-negative controls to be secretors (P < .001) in a logistic regression model adjusted for ancestry, age, site, and health insurance. Secretors comprised all 155 cases and 21 asymptomatic infections with the most prevalent norovirus, GII.4. Control children of Meso-American ancestry were more likely than children of European or African ancestry to be secretors (96% vs 74%; P < .001).ConclusionsFUT2 status is associated with norovirus infection and varies by ancestry. GII.4 norovirus exclusively infected secretors. These findings are important to norovirus vaccine trials and design of agents that may block norovirus-HBGA binding.
Project description:Over 90% of epidemic non-bacterial gastroenteritis are caused by human noroviruses (NoVs), which persist in a substantial subset of people allowing their spread worldwide. This has led to a significant number of endemic cases and up to 70,000 children deaths in developing countries. NoVs are primarily transmitted through the fecal-oral route. To date, studies have focused on the influence of the gut microbiota on enteric viral clearance by mucosal immunity. In this study, the use of mouse norovirus S99 (MNoV_S99) and CR6 (MNoV_CR6), two persistent strains, allowed us to provide evidence that the norovirus-induced exacerbation of colitis severity relied on bacterial sensing by nucleotide-binding oligomerization domain 2 (Nod2). Consequently, Nod2-deficient mice showed reduced levels of gravity of Dextran sodium sulfate (DSS)-induced colitis with both viral strains. And MNoV_CR6 viremia was heightened in Nod2-/- mice in comparison with animals hypomorphic for Atg16l1, which are prone to aggravated inflammation under DSS. Accordingly, the infection of macrophages derived from WT mice promoted the phosphorylation of Signal Transducer and Activator of Transcription 1 (STAT1) and NOD2's expression levels. Higher secretion of Tumor Necrosis Factor alpha (TNFα) following NOD2 activation and better viral clearance were measured in these cells. By contrast, reduced levels of pSTAT1 and blunted downstream secretion of TNFα were found in Nod2-deficient macrophages infected by MNoV_S99. Hence, our results uncover a previously unidentified virus-host-bacterial interplay that may represent a novel therapeutic target for treating noroviral origin gastroenteritis that may be linked with susceptibility to several common illnesses such as Crohn's disease.
Project description:BACKGROUND:The availability of direct-to-consumer personalized genetic testing has enabled the public to access and interpret their own genetic information. Various genetic traits can be determined including resistance to norovirus through a nonsense mutation (G428A) in the FUT2 gene. Although this trait is believed to confer resistance to the most dominant norovirus genotype (GII.4), the spectrum of resistance to other norovirus strains is unknown. The present report describes a cluster of symptomatic norovirus GI.6 infection in a family identified to have norovirus resistance through personalized genetic testing. CASE PRESENTATION:In January 2013, four members of a family determined by a direct-to-consumer genetic test to be homozygous for the norovirus resistance trait (A/A genotype for single nucleotide polymorphism rs601338) developed symptoms consistent with acute viral gastroenteritis. Stool and vomitus samples were submitted for enteric viral pathogen testing. Samples were positive for norovirus GI.6 in three of the four cases. CONCLUSIONS:The present report is the first to describe norovirus GI.6 infection in patients with the G428A nonsense mutation in FUT2; this cluster of cases suggests that the G428A mutation in FUT2 may not confer resistance to norovirus GI.6. Direct-to-consumer genetic testing is empowering members of the public to identify novel associations with their genetic traits. Expert consultation is important for the interpretation of personalized genetic test results, and follow-up laboratory testing can confirm any potentially novel associations.
Project description:The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene-dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.
Project description:To determine the mechanisms that mediate resistance to Mycobacterium tuberculosis (M. tuberculosis) infection in household contacts (HHCs) of patients with tuberculosis (TB), we followed 452 latent TB infection-negative (LTBI-) HHCs for 2 years. Those who remained LTBI- throughout the study were identified as nonconverters. At baseline, nonconverters had a higher percentage of CD14+ and CD3-CD56+CD27+CCR7+ memory-like natural killer (NK) cells. Using a whole-transcriptome and metabolomic approach, we identified deoxycorticosterone acetate as a metabolite with elevated concentrations in the plasma of nonconverters, and further studies showed that this metabolite enhanced glycolytic ATP flux in macrophages and restricted M. tuberculosis growth by enhancing antimicrobial peptide production through the expression of the surface receptor sialic acid binding Ig-like lectin-14. Another metabolite, 4-hydroxypyridine, from the plasma of nonconverters significantly enhanced the expansion of memory-like NK cells. Our findings demonstrate that increased levels of specific metabolites can regulate innate resistance against M. tuberculosis infection in HHCs of patients with TB who never develop LTBI or active TB.
Project description:Genetically regulated mechanisms of host defense against Cryptococcus neoformans infection are not well understood. In this study, pulmonary infection with the moderately virulent C. neoformans strain 24067 was used to compare the host resistance phenotype of C57BL/6J with that of inbred mouse strain SJL/J. At 7 days or later after infection, C57BL/6J mice exhibited a significantly greater fungal burden in the lungs than SJL/J mice. Characterization of the pulmonary innate immune response at 3 h after cryptococcal infection revealed that resistant SJL/J mice exhibited significantly higher neutrophilia, with elevated levels of inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and keratinocyte-derived chemokine (KC)/CXCL1 in the airways, as well as increased whole-lung mRNA expression of chemokines KC/CXCL1, MIP-1alpha/CCL3, MIP-1beta/CCL4, MIP-2/CXCL2, and MCP-1/CCL2 and cytokines interleukin 1beta (IL-1beta) and IL-1Ra. At 7 and 14 days after infection, SJL/J mice maintained significantly higher levels of TNF-alpha and KC/CXCL1 in the airways and exhibited a Th1 response characterized by elevated levels of lung gamma interferon (IFN-gamma) and IL-12/IL-23p40, while C57BL/6J mice exhibited Th2 immunity as defined by eosinophilia and IL-4 production. Alveolar and resident peritoneal macrophages from SJL/J mice also secreted significantly greater amounts of TNF-alpha and KC/CXCL1 following in vitro stimulation with C. neoformans. Intracellular signaling analysis demonstrated that TNF-alpha and KC/CXCL1 production was regulated by NF-kappaB and phosphatidylinositol 3 kinase in both strains; however, SJL/J macrophages exhibited heightened and prolonged activation in response to C. neoformans infection compared to that of C57BL/6J. Taken together, these data demonstrate that an enhanced innate immune response against pulmonary C. neoformans infection in SJL/J mice is associated with natural resistance to progressive infection.
Project description:Metazoans identify and eliminate bacterial pathogens in microbe-rich environments such as the intestinal lumen; however, the mechanisms are unclear. Host cells could potentially use intracellular surveillance or stress response programs to detect pathogens that target monitored cellular activities and then initiate innate immune responses. Mitochondrial function is evaluated by monitoring mitochondrial protein import efficiency of the transcription factor ATFS-1, which mediates the mitochondrial unfolded protein response (UPR(mt)). During mitochondrial stress, mitochondrial import is impaired, allowing ATFS-1 to traffic to the nucleus where it mediates a transcriptional response to re-establish mitochondrial homeostasis. Here we examined the role of ATFS-1 in Caenorhabditis elegans during pathogen exposure, because during mitochondrial stress ATFS-1 induced not only mitochondrial protective genes but also innate immune genes that included a secreted lysozyme and anti-microbial peptides. Exposure to the pathogen Pseudomonas aeruginosa caused mitochondrial dysfunction and activation of the UPR(mt). C. elegans lacking atfs-1 were susceptible to P. aeruginosa, whereas hyper-activation of ATFS-1 and the UPR(mt) improved clearance of P. aeruginosa from the intestine and prolonged C. elegans survival in a manner mainly independent of known innate immune pathways. We propose that ATFS-1 import efficiency and the UPR(mt) is a means to detect pathogens that target mitochondria and initiate a protective innate immune response.
Project description:A norovirus was detected in harbor porpoises, a previously unknown host for norovirus. This norovirus had low similarity to any known norovirus. Viral RNA was detected primarily in intestinal tissue, and specific serum antibodies were detected in 8 (24%) of 34 harbor porpoises from the North Sea.
Project description:Human norovirus (HuNoV) is a leading cause of acute gastroenteritis. Outbreaks normally occur via the fecal-oral route. HuNoV infection is thought to occur by viral particle transmission, but increasing evidence suggests a function for exosomes in HuNoV infection. HuNoV is contained within stool-derived exosomes, and exosome-associated HuNoV has been shown to replicate in human intestinal enteroids. In this study, we examine exosome-associated HuNoV infection of Vero cells and show that exosomes containing HuNoV may attach, infect, and be passaged in Vero cells. These findings support earlier findings and have implications for developing HuNoV disease intervention strategies.