Unknown

Dataset Information

0

Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes.


ABSTRACT: Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning.

SUBMITTER: Kuhn M 

PROVIDER: S-EPMC4847690 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes.

Kuhn Manuel M   Haaker Jan J   Glotzbach-Schoon Evelyn E   Schümann Dirk D   Andreatta Marta M   Mechias Marie-Luise ML   Raczka Karolina K   Gartmann Nina N   Büchel Christian C   Mühlberger Andreas A   Pauli Paul P   Reif Andreas A   Kalisch Raffael R   Lonsdorf Tina B TB  

Social cognitive and affective neuroscience 20160108 5


Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a funct  ...[more]

Similar Datasets

| S-EPMC7839316 | biostudies-literature
| S-EPMC4397412 | biostudies-literature
| S-EPMC3104039 | biostudies-literature
| S-EPMC7164571 | biostudies-literature
| S-EPMC6195525 | biostudies-literature
| S-EPMC5639239 | biostudies-literature
| S-EPMC6196482 | biostudies-literature
| S-EPMC3656345 | biostudies-literature
| S-EPMC7434600 | biostudies-literature
| S-EPMC4205276 | biostudies-literature