Unknown

Dataset Information

0

Identification of microtubule growth deceleration and its regulation by conserved and novel proteins.


ABSTRACT: Microtubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type. We recently reported that all MT dynamic parameters vary throughout differentiation of a smooth muscle cell type in intact Caenorhabditis elegans. Here we describe local differences in MT dynamics and a novel MT behavior: an abrupt change in growth rate (deceleration) of single MTs occurring in the cell periphery of these cells. MT deceleration occurs where there is a decrease in local soluble tubulin concentration at the cell periphery. This local regulation of tubulin concentration and MT deceleration are dependent on two novel homologues of human cylicin. These novel ORFs, which we name cylc-1 and -2, share sequence homology with stathmins and encode small, very basic proteins containing several KKD/E repeats. The TOG domain-containing protein ZYG-9(TOGp) is responsible for the faster polymerization rate within the cell body. Thus we have defined two contributors to the molecular regulation for this novel MT behavior.

SUBMITTER: Lacroix B 

PROVIDER: S-EPMC4850035 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of microtubule growth deceleration and its regulation by conserved and novel proteins.

Lacroix Benjamin B   Ryan Joël J   Dumont Julien J   Maddox Paul S PS   Maddox Amy S AS  

Molecular biology of the cell 20160316 9


Microtubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type. We recently reported that all MT dynamic parameters vary throughout differentiation of a smooth muscle ce  ...[more]

Similar Datasets

| S-EPMC4447640 | biostudies-literature
| S-EPMC4477296 | biostudies-literature
| S-EPMC3169935 | biostudies-literature
| S-EPMC2686402 | biostudies-literature
| S-EPMC3115796 | biostudies-literature
| S-EPMC3666083 | biostudies-literature
| S-EPMC3412009 | biostudies-literature
| S-EPMC503384 | biostudies-literature
| S-EPMC4644220 | biostudies-literature
| S-EPMC3202638 | biostudies-literature