PINK1 and Parkin cooperatively protect neurons against constitutively active TRP channel-induced retinal degeneration in Drosophila.
Ontology highlight
ABSTRACT: Calcium has an important role in regulating numerous cellular activities. However, extremely high levels of intracellular calcium can lead to neurotoxicity, a process commonly associated with degenerative diseases. Despite the clear role of calcium cytotoxicity in mediating neuronal cell death in this context, the pathological mechanisms remain controversial. We used a well-established Drosophila model of retinal degeneration, which involves the constitutively active TRP(P365) channels, to study calcium-induced neurotoxicity. We found that the disruption of mitochondrial function was associated with the degenerative process. Further, increasing autophagy flux prevented cell death in Trp(P365) mutant flies, and this depended on the PINK1/Parkin pathway. In addition, the retinal degeneration process was also suppressed by the coexpression of PINK1 and Parkin. Our results provide genetic evidence that mitochondrial dysfunction has a key role in the pathology of cellular calcium neurotoxicity. In addition, the results demonstrated that maintaining mitochondrial homeostasis via PINK1/Parkin-dependent mitochondrial quality control can potentially alleviate cell death in a wide range of neurodegenerative diseases.
SUBMITTER: Huang Z
PROVIDER: S-EPMC4855661 | biostudies-literature | 2016 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA