Unknown

Dataset Information

0

Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.


ABSTRACT: Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

SUBMITTER: Hwang JY 

PROVIDER: S-EPMC4857610 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.

Hwang Jae Youn JY   Yoon Chi Woo CW   Lim Hae Gyun HG   Park Jin Man JM   Yoon Sangpil S   Lee Jungwoo J   Shung K Kirk KK  

Ultrasonics 20150626


Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate  ...[more]

Similar Datasets

| S-EPMC6320506 | biostudies-literature
| S-EPMC8034102 | biostudies-literature
| S-EPMC2974775 | biostudies-literature
| S-EPMC7526115 | biostudies-literature
| S-EPMC6544454 | biostudies-literature
| S-EPMC6052202 | biostudies-literature
| EGAC00001002481 | EGA
| EGAC00001002498 | EGA
| S-EPMC4956186 | biostudies-other
| S-EPMC4090028 | biostudies-literature