Unknown

Dataset Information

0

Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis.


ABSTRACT: Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3',4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3'-hydroxylation of 2,4,6-trihydroxybenzophenone and C-O phenol coupling of the resulting 2,3',4,6-tetrahydroxybenzophenone. Relative to the inserted 3'-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C-O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs.

SUBMITTER: El-Awaad I 

PROVIDER: S-EPMC4858744 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis.

El-Awaad Islam I   Bocola Marco M   Beuerle Till T   Liu Benye B   Beerhues Ludger L  

Nature communications 20160505


Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3',4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3'-hydroxylation of 2,4,6-trihydroxybenzophenone and C-O phenol coupling  ...[more]

Similar Datasets

| S-EPMC4731807 | biostudies-other
| S-EPMC5981077 | biostudies-literature
| S-EPMC8231192 | biostudies-literature
| S-EPMC6211295 | biostudies-literature
| S-EPMC3119361 | biostudies-literature
| S-EPMC6428139 | biostudies-literature
| S-EPMC6010534 | biostudies-literature
| S-EPMC3067212 | biostudies-literature
| S-EPMC7503927 | biostudies-literature
| S-EPMC5007783 | biostudies-literature