Unknown

Dataset Information

0

Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.


ABSTRACT: Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages.

SUBMITTER: Ju W 

PROVIDER: S-EPMC4861144 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.

Ju Wenjun W   Nair Viji V   Smith Shahaan S   Zhu Li L   Shedden Kerby K   Song Peter X K PXK   Mariani Laura H LH   Eichinger Felix H FH   Berthier Celine C CC   Randolph Ann A   Lai Jennifer Yi-Chun JY   Zhou Yan Y   Hawkins Jennifer J JJ   Bitzer Markus M   Sampson Matthew G MG   Thier Martina M   Solier Corinne C   Duran-Pacheco Gonzalo C GC   Duchateau-Nguyen Guillemette G   Essioux Laurent L   Schott Brigitte B   Formentini Ivan I   Magnone Maria C MC   Bobadilla Maria M   Cohen Clemens D CD   Bagnasco Serena M SM   Barisoni Laura L   Lv Jicheng J   Zhang Hong H   Wang Hai-Yan HY   Brosius Frank C FC   Gadegbeku Crystal A CA   Kretzler Matthias M  

Science translational medicine 20151201 316


Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the bas  ...[more]

Similar Datasets

2015-12-14 | E-GEOD-69438 | biostudies-arrayexpress
2015-12-14 | GSE69438 | GEO
| S-EPMC10167380 | biostudies-literature
| S-EPMC1087708 | biostudies-literature
| S-EPMC5308616 | biostudies-literature
| S-EPMC2518643 | biostudies-literature
| S-EPMC10645887 | biostudies-literature
| S-EPMC5467455 | biostudies-literature
| S-EPMC6207098 | biostudies-literature
| S-EPMC5861942 | biostudies-literature