Unknown

Dataset Information

0

A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation.


ABSTRACT: Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and nuclear factor kB (NFkB) pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells, lacking PRDM1/Blimp1 and carrying c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to the downregulation of p50/p52 and lymphoma growth inhibition. Moreover, a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Although a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, nevertheless the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable tools to validate the role of druggable molecules, predict therapeutic responses and implement patient specific therapies.

SUBMITTER: Abate F 

PROVIDER: S-EPMC4864432 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of  ...[more]

Similar Datasets

| S-EPMC2941277 | biostudies-other
| S-EPMC10467138 | biostudies-literature
| S-EPMC9221431 | biostudies-literature
| S-EPMC8271116 | biostudies-literature
| S-EPMC5664077 | biostudies-literature
| S-EPMC8862178 | biostudies-literature
| S-EPMC8814675 | biostudies-literature
| S-EPMC4170597 | biostudies-literature
| S-EPMC6539248 | biostudies-literature
| S-EPMC7530646 | biostudies-literature