Impact of a bronchial genomic classifier on clinical decision making in patients undergoing diagnostic evaluation for lung cancer.
Ontology highlight
ABSTRACT: Bronchoscopy is frequently used for the evaluation of suspicious pulmonary lesions found on computed tomography, but its sensitivity for detecting lung cancer is limited. Recently, a bronchial genomic classifier was validated to improve the sensitivity of bronchoscopy for lung cancer detection, demonstrating a high sensitivity and negative predictive value among patients at intermediate risk (10-60 %) for lung cancer with an inconclusive bronchoscopy. Our objective for this study was to determine if a negative genomic classifier result that down-classifies a patient from intermediate risk to low risk (<10 %) for lung cancer would reduce the rate that physicians recommend more invasive testing among patients with an inconclusive bronchoscopy.We conducted a randomized, prospective, decision impact survey study assessing pulmonologist recommendations in patients undergoing workup for lung cancer who had an inconclusive bronchoscopy. Cases with an intermediate pretest risk for lung cancer were selected from the AEGIS trials and presented in a randomized fashion to pulmonologists either with or without the patient's bronchial genomic classifier result to determine how the classifier results impacted physician decisions.Two hundred two physicians provided 1523 case evaluations on 36 patients. Invasive procedure recommendations were reduced from 57 % without the classifier result to 18 % with a negative (low risk) classifier result (p?
SUBMITTER: Ferguson JS
PROVIDER: S-EPMC4869188 | biostudies-literature | 2016 May
REPOSITORIES: biostudies-literature
ACCESS DATA