Harvest-induced evolution and effective population size.
Ontology highlight
ABSTRACT: Much has been written about fishery-induced evolution (FIE) in exploited species, but relatively little attention has been paid to the consequences for one of the most important parameters in evolutionary biology-effective population size (N e). We use a combination of simulations of Atlantic cod populations experiencing harvest, artificial manipulation of cod life tables, and analytical methods to explore how adding harvest to natural mortality affects N e, census size (N), and the ratio N e/N. We show that harvest-mediated reductions in N e are due entirely to reductions in recruitment, because increasing adult mortality actually increases the N e/N ratio. This means that proportional reductions in abundance caused by harvest represent an upper limit to the proportional reductions in N e, and that in some cases N e can even increase with increased harvest. This result is a quite general consequence of increased adult mortality and does not depend on harvest selectivity or FIE, although both of these influence the results in a quantitative way. In scenarios that allowed evolution, N e recovered quickly after harvest ended and remained higher than in the preharvest population for well over a century, which indicates that evolution can help provide a long-term buffer against loss of genetic variability.
SUBMITTER: Kuparinen A
PROVIDER: S-EPMC4869408 | biostudies-literature | 2016 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA