Unknown

Dataset Information

0

Original Research: Generation of non-deletional hereditary persistence of fetal hemoglobin β-globin locus yeast artificial chromosome transgenic mouse models: -175 Black HPFH and -195 Brazilian HPFH.


ABSTRACT: Fetal hemoglobin is a major genetic modifier of the phenotypic heterogeneity in patients with sickle cell disease and certain β-thalassemias. Normal levels of fetal hemoglobin postnatally are approximately 1% of total hemoglobin. Patients who have hereditary persistence of fetal hemoglobin, characterized by elevated synthesis of γ-globin in adulthood, show reduced disease pathophysiology. Hereditary persistence of fetal hemoglobin is caused by β-globin locus deletions (deletional hereditary persistence of fetal hemoglobin) or γ-globin gene promoter point mutations (non-deletional hereditary persistence of fetal hemoglobin). Current research has focused on elucidating the pathways involved in the maintenance/reactivation of γ-globin in adult life. To better understand these pathways, we generated new β-globin locus yeast artificial chromosome transgenic mice bearing the (A)γ-globin -175 T > C or -195 C > G hereditary persistence of fetal hemoglobin mutations to model naturally occurring hereditary persistence of fetal hemoglobin. Adult -175 and -195 mutant β-YAC mice displayed a hereditary persistence of fetal hemoglobin phenotype, as measured at the mRNA and protein levels. The molecular basis for these phenotypes was examined by chromatin immunoprecipitation of transcription factor/co-factor binding, including YY1, PAX1, TAL1, LMO2, and LDB1. In -175 HPFH versus wild-type samples, the occupancy of LMO2, TAL1 and LDB1 proteins was enriched in HPFH mice (5.8-fold, 5.2-fold and 2.7-fold, respectively), a result that concurs with a recent study in cell lines showing that these proteins form a complex with GATA-1 to mediate long-range interactions between the locus control region and the (A)γ-globin gene. Both hereditary persistence of fetal hemoglobin mutations result in a gain of (A)γ-globin activation, in contrast to other hereditary persistence of fetal hemoglobin mutations that result in a loss of repression. The mice provide additional tools to study γ-globin gene expression and may reveal new targets for selectively activating fetal hemoglobin.

SUBMITTER: Braghini CA 

PROVIDER: S-EPMC4871743 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6565566 | biostudies-literature
| S-EPMC8610173 | biostudies-literature
2021-04-22 | GSE152338 | GEO
| S-EPMC2819221 | biostudies-literature
| S-EPMC6605093 | biostudies-literature
2018-01-01 | GSE93973 | GEO
| S-EPMC2930131 | biostudies-literature
2018-01-01 | GSE93971 | GEO
| S-EPMC3624254 | biostudies-other
| PRJNA639052 | ENA