Unknown

Dataset Information

0

Increased Cord Blood Betatrophin Levels in the Offspring of Mothers with Gestational Diabetes.


ABSTRACT:

Aim

Exposing a fetus to hyperglycemia can increase the risk for later-life metabolic disorders. Betatrophin has been proposed as a key regulator of pancreatic beta cell proliferation and lipid regulation. Highly responsive to nutritional signals, serum betatrophin concentrations have been found to be altered by various physiological and pathological conditions. We hypothesized that betatrophin levels are increased in the cord blood in offspring exposed to intrauterine hyperglycemia.

Methods

This was a cross-sectional study including 54 mothers who underwent uncomplicated Cesarean delivery in a university hospital. Maternal gestational glucose concentration was determined at 24-48 weeks gestation after a 75-g OGTT. Cord blood and placental tissue was collected immediately post delivery. Metabolic parameters were determined in the Clinical Laboratory. Cord blood betatrophin levels were assayed using a commercially available ELISA kit. Placental mitochondrial content was determined by real-time PCR.

Results

Cord blood betatrophin levels were increased in the gestational diabetes mellitus (GDM) group compared with the normoglycemic group. Furthermore, betatrophin levels were positively correlated with maternal gestational 2h post-OGTT glucose, cord blood insulin, HOMA-IR, and inversely correlated with placental mitochondrial content.

Conclusions

Cord blood betatrophin may function as a potential biomarker of maternal intrauterine hyperglycemia and fetal insulin resistance, which may presage for long-term metabolic impact of GDM on offspring.

SUBMITTER: Xie X 

PROVIDER: S-EPMC4873017 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Increased Cord Blood Betatrophin Levels in the Offspring of Mothers with Gestational Diabetes.

Xie Xuemei X   Gao Hongjie H   Wu Shimin S   Zhao Yue Y   Du Caiqi C   Yuan Guandou G   Ning Qin Q   McCormick Kenneth K   Luo Xiaoping X  

PloS one 20160519 5


<h4>Aim</h4>Exposing a fetus to hyperglycemia can increase the risk for later-life metabolic disorders. Betatrophin has been proposed as a key regulator of pancreatic beta cell proliferation and lipid regulation. Highly responsive to nutritional signals, serum betatrophin concentrations have been found to be altered by various physiological and pathological conditions. We hypothesized that betatrophin levels are increased in the cord blood in offspring exposed to intrauterine hyperglycemia.<h4>M  ...[more]

Similar Datasets

| S-EPMC5231180 | biostudies-literature
| S-EPMC9072024 | biostudies-literature
| S-EPMC5063329 | biostudies-literature
| S-EPMC6135499 | biostudies-literature
| S-EPMC5368916 | biostudies-literature
| S-EPMC5291182 | biostudies-literature
2021-06-23 | GSE122086 | GEO
| S-EPMC9126248 | biostudies-literature
| S-EPMC8416672 | biostudies-literature
| S-EPMC7645212 | biostudies-literature