Ontology highlight
ABSTRACT: Aim
Exposing a fetus to hyperglycemia can increase the risk for later-life metabolic disorders. Betatrophin has been proposed as a key regulator of pancreatic beta cell proliferation and lipid regulation. Highly responsive to nutritional signals, serum betatrophin concentrations have been found to be altered by various physiological and pathological conditions. We hypothesized that betatrophin levels are increased in the cord blood in offspring exposed to intrauterine hyperglycemia.Methods
This was a cross-sectional study including 54 mothers who underwent uncomplicated Cesarean delivery in a university hospital. Maternal gestational glucose concentration was determined at 24-48 weeks gestation after a 75-g OGTT. Cord blood and placental tissue was collected immediately post delivery. Metabolic parameters were determined in the Clinical Laboratory. Cord blood betatrophin levels were assayed using a commercially available ELISA kit. Placental mitochondrial content was determined by real-time PCR.Results
Cord blood betatrophin levels were increased in the gestational diabetes mellitus (GDM) group compared with the normoglycemic group. Furthermore, betatrophin levels were positively correlated with maternal gestational 2h post-OGTT glucose, cord blood insulin, HOMA-IR, and inversely correlated with placental mitochondrial content.Conclusions
Cord blood betatrophin may function as a potential biomarker of maternal intrauterine hyperglycemia and fetal insulin resistance, which may presage for long-term metabolic impact of GDM on offspring.
SUBMITTER: Xie X
PROVIDER: S-EPMC4873017 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
Xie Xuemei X Gao Hongjie H Wu Shimin S Zhao Yue Y Du Caiqi C Yuan Guandou G Ning Qin Q McCormick Kenneth K Luo Xiaoping X
PloS one 20160519 5
<h4>Aim</h4>Exposing a fetus to hyperglycemia can increase the risk for later-life metabolic disorders. Betatrophin has been proposed as a key regulator of pancreatic beta cell proliferation and lipid regulation. Highly responsive to nutritional signals, serum betatrophin concentrations have been found to be altered by various physiological and pathological conditions. We hypothesized that betatrophin levels are increased in the cord blood in offspring exposed to intrauterine hyperglycemia.<h4>M ...[more]