Unknown

Dataset Information

0

Fasiglifam (TAK-875) has dual potentiating mechanisms via G?q-GPR40/FFAR1 signaling branches on glucose-dependent insulin secretion.


ABSTRACT: Fasiglifam (TAK-875) is a free fatty acid receptor 1 (FFAR1)/G-protein-coupled receptor 40 (GPR40) agonist that improves glycemic control in type 2 diabetes with minimum risk of hypoglycemia. Fasiglifam potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic ?-cells glucose dependently, although the precise mechanism underlying the glucose dependency still remains unknown. Here, we investigated key cross-talk between the GSIS pathway and FFAR1 signaling, and Ca(2+) dynamics using mouse insulinoma MIN6 cells. We demonstrated that the glucose-dependent insulinotropic effect of fasiglifam required membrane depolarization and that fasiglifam induced a glucose-dependent increase in intracellular Ca(2+) level and amplification of Ca(2+) oscillations. This differed from the sulfonylurea glimepiride that induced changes in Ca(2+) dynamics glucose independently. Stimulation with cell-permeable analogs of IP3 or diacylglycerol (DAG), downstream second messengers of G?q-FFAR1, augmented GSIS similar to fasiglifam, indicating their individual roles in the potentiation of GSIS pathway. Intriguingly, the IP3 analog triggered similar Ca(2+) dynamics to fasiglifam, whereas the DAG analog had no effect. Despite the lack of an effect on Ca(2+) dynamics, the DAG analog elicited synergistic effects on insulin secretion with Ca(2+) influx evoked by an L-type voltage-dependent calcium channel opener that mimics glucose-dependent Ca(2+) dynamics. These results indicate that the G?q signaling activated by fasiglifam enhances GSIS pathway via dual potentiating mechanisms in which IP3 amplifies glucose-induced Ca(2+) oscillations and DAG/protein kinase C (PKC) augments downstream secretory mechanisms independent of Ca(2+) oscillations.

SUBMITTER: Sakuma K 

PROVIDER: S-EPMC4876146 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fasiglifam (TAK-875) has dual potentiating mechanisms via Gαq-GPR40/FFAR1 signaling branches on glucose-dependent insulin secretion.

Sakuma Kensuke K   Yabuki Chiori C   Maruyama Minoru M   Abiru Akiko A   Komatsu Hidetoshi H   Negoro Nobuyuki N   Tsujihata Yoshiyuki Y   Takeuchi Koji K   Habata Yugo Y   Mori Masaaki M  

Pharmacology research & perspectives 20160427 3


Fasiglifam (TAK-875) is a free fatty acid receptor 1 (FFAR1)/G-protein-coupled receptor 40 (GPR40) agonist that improves glycemic control in type 2 diabetes with minimum risk of hypoglycemia. Fasiglifam potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells glucose dependently, although the precise mechanism underlying the glucose dependency still remains unknown. Here, we investigated key cross-talk between the GSIS pathway and FFAR1 signaling, and Ca(2+) dynamics using  ...[more]

Similar Datasets

| S-EPMC3791995 | biostudies-literature
| S-EPMC4007909 | biostudies-other
| S-EPMC3794927 | biostudies-literature
| S-EPMC3600727 | biostudies-literature
| S-EPMC3554318 | biostudies-literature
| S-EPMC5150676 | biostudies-literature
| S-EPMC5516985 | biostudies-other
| S-EPMC6452680 | biostudies-literature
| S-EPMC5766607 | biostudies-other
| S-EPMC4867641 | biostudies-literature