Unknown

Dataset Information

0

GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity.


ABSTRACT: Breast cancers possess fundamentally altered metabolism that fuels their pathogenicity. While many metabolic drivers of breast cancers have been identified, the metabolic pathways that mediate breast cancer malignancy and poor prognosis are less well understood. Here, we used a reactivity-based chemoproteomic platform to profile metabolic enzymes that are enriched in breast cancer cell types linked to poor prognosis, including triple-negative breast cancer (TNBC) cells and breast cancer cells that have undergone an epithelial-mesenchymal transition-like state of heightened malignancy. We identified glutathione S-transferase Pi 1 (GSTP1) as a novel TNBC target that controls cancer pathogenicity by regulating glycolytic and lipid metabolism, energetics, and oncogenic signaling pathways through a protein interaction that activates glyceraldehyde-3-phosphate dehydrogenase activity. We show that genetic or pharmacological inactivation of GSTP1 impairs cell survival and tumorigenesis in TNBC cells. We put forth GSTP1 inhibitors as a novel therapeutic strategy for combatting TNBCs through impairing key cancer metabolism and signaling pathways.

SUBMITTER: Louie SM 

PROVIDER: S-EPMC4876719 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity.

Louie Sharon M SM   Grossman Elizabeth A EA   Crawford Lisa A LA   Ding Lucky L   Camarda Roman R   Huffman Tucker R TR   Miyamoto David K DK   Goga Andrei A   Weerapana Eranthie E   Nomura Daniel K DK  

Cell chemical biology 20160512 5


Breast cancers possess fundamentally altered metabolism that fuels their pathogenicity. While many metabolic drivers of breast cancers have been identified, the metabolic pathways that mediate breast cancer malignancy and poor prognosis are less well understood. Here, we used a reactivity-based chemoproteomic platform to profile metabolic enzymes that are enriched in breast cancer cell types linked to poor prognosis, including triple-negative breast cancer (TNBC) cells and breast cancer cells th  ...[more]

Similar Datasets

| S-EPMC6244401 | biostudies-literature
| S-EPMC7140497 | biostudies-literature
| S-EPMC9407008 | biostudies-literature
| S-EPMC6858455 | biostudies-literature
| S-EPMC10951988 | biostudies-literature
| S-EPMC2972557 | biostudies-literature
| S-EPMC8657222 | biostudies-literature
| S-EPMC10008496 | biostudies-literature
| S-EPMC7611219 | biostudies-literature
| S-EPMC5733497 | biostudies-literature