Unknown

Dataset Information

0

TGF-β1 improves mucosal IgA dysfunction and dysbiosis following intestinal ischaemia-reperfusion in mice.


ABSTRACT: Intestinal ischaemia/reperfusion (I/R) severely disrupts gut barriers and leads to high mortality in the critical care setting. Transforming growth factor (TGF)-β1 plays a pivotal role in intestinal cellular and immune regulation. However, the effects of TGF-β1 on intestinal I/R injury remain unclear. Thus, we aimed to investigate the effects of TGF-β1 on gut barriers after intestinal I/R and the molecular mechanisms. Intestinal I/R model was produced in mice by clamping the superior mesenteric artery for 1 hr followed by reperfusion. Recombinant TGF-β1 was intravenously infused at 15 min. before ischaemia. The results showed that within 2 hrs after reperfusion, intestinal I/R disturbed intestinal immunoglobulin A class switch recombination (IgA CSR), the key process of mucosal IgA synthesis, and resulted in IgA dysfunction, as evidenced by decreased production and bacteria-binding capacity of IgA. Meanwhile, the disruptions of intestinal microflora and mucosal structure were exhibited. Transforming growth factor-β1 activated IgA CSR as evidenced by the increased activation molecules and IgA precursors. Strikingly, TGF-β1 improved intestinal mucosal IgA dysfunction, dysbiosis and epithelial damage at the early stage after reperfusion. In addition, SB-431542, a specific inhibitor of activating mothers against decapentaplegic homologue (SMAD) 2/3, totally blocked the inductive effect of TGF-β1 on IgA CSR and almost abrogated the above protective effects on intestinal barriers. Taken together, our study demonstrates that TGF-β1 protects intestinal mucosal IgA immunity, microbiota and epithelial integrity against I/R injury mainly through TGF-β receptor 1/SMAD 2/3 pathway. Induction of IgA CSR may be involved in the protection conferred by TGF-β1.

SUBMITTER: Zhang XY 

PROVIDER: S-EPMC4882980 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9302483 | biostudies-literature
| S-EPMC9151698 | biostudies-literature
| S-EPMC7381641 | biostudies-literature
| S-EPMC4549033 | biostudies-literature
| S-EPMC3288790 | biostudies-literature
| S-EPMC7642201 | biostudies-literature
| S-EPMC1198918 | biostudies-other
| S-EPMC6832711 | biostudies-literature
2023-11-22 | GSE190546 | GEO
| S-EPMC10730240 | biostudies-literature