Unknown

Dataset Information

0

Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications.


ABSTRACT: Cysteine S-nitrosation and S-sulfination are naturally occurring post-translational modifications (PTMs) on proteins induced by physiological signals and redox stress. Here we demonstrate that sulfinic acids and nitrosothiols react to form a stable thiosulfonate bond, and leverage this reactivity using sulfinate-linked probes to enrich and annotate hundreds of endogenous S-nitrosated proteins. In physiological buffers, sulfinic acids do not react with iodoacetamide or disulfides, enabling selective alkylation of free thiols and site-specific analysis of S-nitrosation. In parallel, S-nitrosothiol-linked probes enable enrichment and detection of endogenous S-sulfinated proteins, confirming that a single sulfinic acid can react with a nitrosothiol to form a thiosulfonate linkage. Using this approach, we find that hydrogen peroxide addition increases S-sulfination of human DJ-1 (PARK7) at Cys106, whereas Cys46 and Cys53 are fully oxidized to sulfonic acids. Comparative gel-based analysis of different mouse tissues reveals distinct profiles for both S-nitrosation and S-sulfination. Quantitative proteomic analysis demonstrates that both S-nitrosation and S-sulfination are widespread, yet exhibit enhanced occupancy on select proteins, including thioredoxin, peroxiredoxins, and other validated redox active proteins. Overall, we present a direct, bidirectional method to profile select redox cysteine modifications based on the unique nucleophilicity of sulfinic acids.

SUBMITTER: Majmudar JD 

PROVIDER: S-EPMC4883004 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications.

Majmudar Jaimeen D JD   Konopko Aaron M AM   Labby Kristin J KJ   Tom Christopher T M B CT   Crellin John E JE   Prakash Ashesh A   Martin Brent R BR  

Journal of the American Chemical Society 20160205 6


Cysteine S-nitrosation and S-sulfination are naturally occurring post-translational modifications (PTMs) on proteins induced by physiological signals and redox stress. Here we demonstrate that sulfinic acids and nitrosothiols react to form a stable thiosulfonate bond, and leverage this reactivity using sulfinate-linked probes to enrich and annotate hundreds of endogenous S-nitrosated proteins. In physiological buffers, sulfinic acids do not react with iodoacetamide or disulfides, enabling select  ...[more]

Similar Datasets

| S-EPMC3047142 | biostudies-literature
| S-EPMC3903235 | biostudies-literature
| S-EPMC9307955 | biostudies-literature
| S-EPMC7930113 | biostudies-literature
| S-EPMC4186267 | biostudies-literature
| S-EPMC10792240 | biostudies-literature
| S-EPMC3508472 | biostudies-literature
| S-EPMC5514408 | biostudies-literature
| S-EPMC3297986 | biostudies-literature
| S-EPMC3936484 | biostudies-literature