Characterization of the 5'-flanking region of the human TP53 gene and its response to the natural compound, Resveratrol.
Ontology highlight
ABSTRACT: Tumour suppressor p53, which is encoded by theTP53gene, is widely known to play an important role in response to DNA damage and various stresses. It has recently been reported that p53 regulates glucose metabolism and that an increase in p53 protein level is induced after serum deprivation or treatments with a natural compound,trans-Resveratrol (Rsv). In this study, we constructed a Luciferase expression vector, pGL4-TP53-551, containing 551 bp of the 5'-upstream region of the humanTP53gene, which was then transfected into HeLa S3 cells. A Luciferase assay showed that Rsv treatment increased the promoter activity of theTP53gene in comparison to that ofPIF1 Detailed deletion and mutation analyses revealed that Nkx-2.5 and E2F-binding elements are required in addition to duplicated GGAA (TTCC), for the regulation ofTP53promoter activity. In this study, it is suggested that the transient induction ofTP53gene expression by Rsv treatment might be partly involved in its anti-aging effect through maintenance of chromosomal DNAs.
SUBMITTER: Uchiumi F
PROVIDER: S-EPMC4885937 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA