Unknown

Dataset Information

0

The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis.


ABSTRACT: Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development. DLST is the E2 transferase of the ?-ketoglutarate (?-KG) dehydrogenase complex (KGDHC), which converts ?-KG to succinyl-CoA in the TCA cycle. RNAi knockdown of DLST led to decreased cell viability and induction of apoptosis in human T-ALL cell lines. Polar metabolomics profiling revealed that the TCA cycle was disrupted by DLST knockdown in human T-ALL cells, as demonstrated by an accumulation of ?-KG and a decrease of succinyl-CoA. Addition of succinate, the downstream TCA cycle intermediate, to human T-ALL cells was sufficient to rescue defects in cell viability caused by DLST inactivation. Together, our studies uncovered an important role for DLST in MYC-mediated leukemogenesis and demonstrated the metabolic dependence of T-lymphoblasts on the TCA cycle, thus providing implications for targeted therapy.

SUBMITTER: Anderson NM 

PROVIDER: S-EPMC4889531 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significant  ...[more]

Similar Datasets

| S-EPMC8595664 | biostudies-literature
| S-EPMC8313233 | biostudies-literature
| S-EPMC8654791 | biostudies-literature
2019-05-21 | GSE121474 | GEO
| S-EPMC6585968 | biostudies-literature
| S-EPMC7852548 | biostudies-literature
| S-EPMC5898814 | biostudies-other
| S-EPMC6750230 | biostudies-literature
| S-EPMC3192765 | biostudies-literature
| S-EPMC5731346 | biostudies-literature