Single-trial prediction of reaction time variability from MEG brain activity.
Ontology highlight
ABSTRACT: Neural activity prior to movement onset contains essential information for predictive assistance for humans using brain-machine-interfaces (BMIs). Even though previous studies successfully predicted different goals for upcoming movements, it is unclear whether non-invasive recording signals contain the information to predict trial-by-trial behavioral variability under the same movement. In this paper, we examined the predictability of subsequent short or long reaction times (RTs) from magnetoencephalography (MEG) signals in a delayed-reach task. The difference in RTs was classified significantly above chance from 550 ms before the go-signal onset using the cortical currents in the premotor cortex. Significantly above-chance classification was performed in the lateral prefrontal and the right inferior parietal cortices at the late stage of the delay period. Thus, inter-trial variability in RTs is predictable information. Our study provides a proof-of-concept of the future development of non-invasive BMIs to prevent delayed movements.
SUBMITTER: Ohata R
PROVIDER: S-EPMC4889999 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA