Unknown

Dataset Information

0

Focal adhesion kinase regulation in stem cell alignment and spreading on nanofibers.


ABSTRACT: While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced uniaxially aligned and randomly distributed nanofibers from poly(l-lactic acid) to have the same diameters (about 130 nm) and evaluated MSC behavior on these nanofibers comparing with that on flat PLLA control. C3H10T1/2 murine MSCs exhibited upregulations in FAK expression and phosphorylation (pY397) on nanofibrous cultures as assessed by immunoblotting, and this trend was even greater on aligned nanofibers. MSCs showed significantly elongated and well-spread morphologies on aligned and random nanofibers, respectively. In the presence of FAK silencing via small hairpin RNA (shRNA), cell elongation length in the aligned nanofiber direction (cell major axis length) was significantly decreased, while cells still showed preferred orientation along the aligned nanofibers. On random nanofibers, MSCs with FAK-shRNA showed impaired cell spreading resulting in smaller cell area and higher circularity. Our study provides new data on how MSCs shape their morphologies on aligned and random nanofibrous cultures potentially via FAK-mediated mechanism.

SUBMITTER: Andalib MN 

PROVIDER: S-EPMC4893025 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Focal adhesion kinase regulation in stem cell alignment and spreading on nanofibers.

Andalib Mohammad Nahid MN   Lee Jeong Soon JS   Ha Ligyeom L   Dzenis Yuris Y   Lim Jung Yul JY  

Biochemical and biophysical research communications 20160401 4


While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced uniaxially aligned and randomly distributed nanofibers from poly(l-lactic acid) to have the same diamete  ...[more]

Similar Datasets

| S-EPMC2190577 | biostudies-literature
| S-EPMC3810461 | biostudies-literature
2013-09-17 | GSE43873 | GEO
| S-EPMC4325834 | biostudies-other
2013-09-17 | E-GEOD-43873 | biostudies-arrayexpress
| S-EPMC2796108 | biostudies-literature
| S-EPMC2675629 | biostudies-literature
| S-EPMC1222856 | biostudies-other
| S-EPMC2857020 | biostudies-literature
| S-EPMC3244064 | biostudies-literature