Solution, Solid, and Gas Phase Studies on a Nickel Dithiolene System: Spectator Metal and Reactor Ligand.
Ontology highlight
ABSTRACT: The syntheses of cationic nickel complexes using N,N'-dimethyl piperazine 2,3-dithione (Me2Dt(0)) and N,N'-diisopropyl piperazine 2,3-dithione ((i)Pr2Dt(0)) ligands are reported. These ligands were used in synthesizing bis and tris(dithione)Ni(II) complexes as tetrafluoroborate or hexafluorophosphate salts, i.e., [Ni((i)Pr2Dt(0))2][BF4]2 ([1a][BF4]2), [Ni((i)Pr2Dt(0))2][PF6]2 ([1a][PF6]2), [Ni(Me2Dt(0))2][BF4]2 ([1b][BF4]2), [Ni((i)Pr2Dt(0))3][BF4]2 ([2a][BF4]2), and [Ni((i)Pr2Dt(0))3][PF6]2 ([2a][PF6]2), respectively. Complex [2a][PF6]2 was isolated from a methanolic solution of [1a][PF6]2. Compound [1a][BF4]2 crystallizes in a trigonal crystal system (space group, P31/c) and exhibits unique packing features, whereas [2a][BF4]2 crystallizes in a monoclinic (P21/n) space group. Cyclic voltammograms of [1a][BF4]2 and [1b][BF4]2 are indicative of four reduction processes associated with stepwise single-electron reduction of the ligands. Spectroelectrochemical experiments on [1a][BF4]2 exhibit an intervalence charge transfer (IVCT) transition as a spectroscopic signature of the mixed-valence [Ni((i)Pr2Dt(0))((i)Pr2Dt(1-))](-) species. Analysis of this IVCT band suggests that this ligand based mixed valence complex, [Ni((i)Pr2Dt(0))((i)Pr2Dt(1-))](-), behaves more like a traditional class II/III metal based mixed-valence complex. The density functional theory (DFT) and time dependent DFT calculations provide a theoretical framework for understanding the electronic structures and the nature of excited states of the target compounds that are consistent with their spectroscopic and redox properties. Vibrational spectra of [1a](2+) and [2a](2+) were investigated as discrete species in the gas phase using infrared multiple photon dissociation (IRMPD) spectroscopy.
SUBMITTER: Mogesa B
PROVIDER: S-EPMC4898908 | biostudies-literature | 2015 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA