Project description:Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI) based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG) related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female) and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8). A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation.
Project description:We present a mobile brain-body imaging (MoBI) dataset acquired during treadmill walking in a brain-computer interface (BCI) task. The data were collected from eight healthy subjects, each having three identical trials. Each trial consisted of three conditions: standing, treadmill walking, and treadmill walking with a closed-loop BCI. During the BCI condition, subjects used their brain activity to control a virtual avatar on a screen to walk in real-time. Robust procedures were designed to record lower limb joint angles (bilateral hip, knee, and ankle) using goniometers synchronized with 60-channel scalp electroencephalography (EEG). Additionally, electrooculogram (EOG), EEG electrodes impedance, and digitized EEG channel locations were acquired to aid artifact removal and EEG dipole-source localization. This dataset is unique in that it is the first published MoBI dataset recorded during walking. It is useful in addressing several important open research questions, such as how EEG is coupled with gait cycle during closed-loop BCI, how BCI influences neural activity during walking, and how a BCI decoder may be optimized.
Project description:Brain-computer interfaces (BCI) can be designed with several feedback modalities. To promote appropriate brain plasticity in therapeutic applications, the feedback should guide the user to elicit the desired brain activity and preferably be similar to the imagined action. In this study, we employed magnetoencephalography (MEG) to measure neurophysiological changes in healthy subjects performing motor imagery (MI) -based BCI training with two different feedback modalities. The MI-BCI task used in this study lasted 40-60 min and involved imagery of right- or left-hand movements. 8 subjects performed the task with visual and 14 subjects with proprioceptive feedback. We analysed power changes across the session at multiple frequencies in the range of 4-40 Hz with a generalized linear model to find those frequencies at which the power increased significantly during training. In addition, the power increase was analysed for each gradiometer, separately for alpha (8-13 Hz), beta (14-30 Hz) and gamma (30-40 Hz) bands, to find channels showing significant linear power increase over the session. These analyses were applied during three different conditions: rest, preparation, and MI. Visual feedback enhanced the amplitude of mainly high beta and gamma bands (24-40 Hz) in all conditions in occipital and left temporal channels. During proprioceptive feedback, in contrast, power increased mainly in alpha and beta bands. The alpha-band enhancement was found in multiple parietal, occipital, and temporal channels in all conditions, whereas the beta-band increase occurred during rest and preparation mainly in the parieto-occipital region and during MI in the parietal channels above hand motor regions. Our results show that BCI training with proprioceptive feedback increases the power of sensorimotor rhythms in the motor cortex, whereas visual feedback causes mainly a gamma-band increase in the visual cortex. MI-BCIs should involve proprioceptive feedback to facilitate plasticity in the motor cortex.
Project description:Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users' gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. This study aims to investigate the changes of cortical involvement in human treadmill walking with and without BCI control of a walking avatar. Source localization revealed significant differences in cortical network activity between walking with and without closed-loop BCI control. Our results showed sustained α/µ suppression in the Posterior Parietal Cortex and Inferior Parietal Lobe, indicating increases of cortical involvement during walking with BCI control. We also observed significant increased activity of the Anterior Cingulate Cortex (ACC) in the low frequency band suggesting the presence of a cortical network involved in error monitoring and motor learning. Additionally, the presence of low γ modulations in the ACC and Superior Temporal Gyrus may associate with increases of voluntary control of human gait. This work is a further step toward the development of a novel training paradigm for improving the efficacy of rehabilitation in a top-down approach.
Project description:BackgroundExcessive reliance on wheelchairs in individuals with tetraplegia or paraplegia due to spinal cord injury (SCI) leads to many medical co-morbidities, such as cardiovascular disease, metabolic derangements, osteoporosis, and pressure ulcers. Treatment of these conditions contributes to the majority of SCI health care costs. Restoring able-body-like ambulation in this patient population can potentially reduce the incidence of these medical co-morbidities, in addition to increasing independence and quality of life. However, no biomedical solution exists that can reverse this loss of neurological function, and hence novel methods are needed. Brain-computer interface (BCI) controlled lower extremity prostheses may constitute one such novel approach.MethodsOne able-bodied subject and one subject with paraplegia due to SCI underwent electroencephalogram (EEG) recordings while engaged in alternating epochs of idling and walking kinesthetic motor imagery (KMI). These data were analyzed to generate an EEG prediction model for online BCI operation. A commercial robotic gait orthosis (RoGO) system (suspended over a treadmill) was interfaced with the BCI computer to allow for computerized control. The subjects were then tasked to perform five, 5-min-long online sessions where they ambulated using the BCI-RoGO system as prompted by computerized cues. The performance of this system was assessed with cross-correlation analysis, and omission and false alarm rates.ResultsThe offline accuracy of the EEG prediction model averaged 86.30% across both subjects (chance: 50%). The cross-correlation between instructional cues and the BCI-RoGO walking epochs averaged across all subjects and all sessions was 0.812 ± 0.048 (p-value <10(-4)). Also, there were on average 0.8 false alarms per session and no omissions.ConclusionThese results provide preliminary evidence that restoring brain-controlled ambulation after SCI is feasible. Future work will test the function of this system in a population of subjects with SCI. If successful, this may justify the future development of BCI-controlled lower extremity prostheses for free overground walking for those with complete motor SCI. Finally, this system can also be applied to incomplete motor SCI, where it could lead to improved neurological outcomes beyond those of standard physiotherapy.
Project description:Motor imagery (MI)-based brain-computer interface (BCI) systems have shown promising advances for lower limb motor rehabilitation. The purpose of this study was to develop an MI-based BCI for the actions of standing and sitting. Thirty-two healthy subjects participated in the study using 17 active EEG electrodes. We used a combination of the filter bank common spatial pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA) technique for decoding EEG rhythms offline and online during motor imagery for standing and sitting. The offline analysis indicated the classification of motor imagery and idle state provided a mean accuracy of 88.51 ± 1.43% and 85.29 ± 1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69 ± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that the MI-based BCI may be useful to future brain-controlled standing systems.
Project description:This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002-3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.
Project description:BACKGROUND AND PURPOSE:Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). METHODS:Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. RESULTS:Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. CONCLUSIONS:These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.
Project description:Brain-computer interface (BCI) paradigms are usually tested when environmental and biological artifacts are intentionally avoided. In this study, we deliberately introduced different perturbations in order to test the robustness of a steady state visual evoked potential (SSVEP) based BCI. Specifically we investigated to what extent a drop in performance is related to the degraded quality of EEG signals or rather due to increased cognitive load. In the online tasks, subjects focused on one of the four circles and gave feedback on the correctness of the classification under four conditions randomized across subjects: Control (no perturbation), Speaking (counting loudly and repeatedly from one to ten), Thinking (mentally counting repeatedly from one to ten), and Listening (listening to verbal counting from one to ten). Decision tree, Naïve Bayes and K-Nearest Neighbor classifiers were used to evaluate the classification performance using features generated by canonical correlation analysis. During the online condition, Speaking and Thinking decreased moderately the mean classification accuracy compared to Control condition whereas there was no significant difference between Listening and Control conditions across subjects. The performances were sensitive to the classification method and to the perturbation conditions. We have not observed significant artifacts in EEG during perturbations in the frequency range of interest except in theta band. Therefore we concluded that the drop in the performance is likely to have a cognitive origin. During the Listening condition relative alpha power in a broad area including central and temporal regions primarily over the left hemisphere correlated negatively with the performance thus most likely indicating active suppression of the distracting presentation of the playback. This is the first study that systematically evaluates the effects of natural artifacts (i.e. mental, verbal and audio perturbations) on SSVEP-based BCIs. The results can be used to improve individual classification performance taking into account effects of perturbations.
Project description:Brain signals represent a communication modality that can allow users of assistive robots to specify high-level goals, such as the object to fetch and deliver. In this paper, we consider a screen-free Brain-Computer Interface (BCI), where the robot highlights candidate objects in the environment using a laser pointer, and the user goal is decoded from the evoked responses in the electroencephalogram (EEG). Having the robot present stimuli in the environment allows for more direct commands than traditional BCIs that require the use of graphical user interfaces. Yet bypassing a screen entails less control over stimulus appearances. In realistic environments, this leads to heterogeneous brain responses for dissimilar objects-posing a challenge for reliable EEG classification. We model object instances as subclasses to train specialized classifiers in the Riemannian tangent space, each of which is regularized by incorporating data from other objects. In multiple experiments with a total of 19 healthy participants, we show that our approach not only increases classification performance but is also robust to both heterogeneous and homogeneous objects. While especially useful in the case of a screen-free BCI, our approach can naturally be applied to other experimental paradigms with potential subclass structure.