Unknown

Dataset Information

0

Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia.


ABSTRACT: BACKGROUND:In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca(2+) dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2(R4496C+/Cx40eGFP)), we tested whether PC intracellular Ca(2+) ([Ca(2+)]i) dysregulation results from a constitutive [Na(+)]i surplus relative to VMs. METHODS AND RESULTS:Simultaneous optical mapping of voltage and [Ca(2+)]i in CPVT hearts showed that spontaneous Ca(2+) release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca(2+) imaging, early and delayed afterdepolarizations trailed spontaneous Ca(2+) release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca(2+) load, measured by caffeine-induced Ca(2+) transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na(+)]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na(+)/Ca(2+) exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na(+)]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca(2+) release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na(+)]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca(2+) spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na(+)]i played a central role. CONCLUSIONS:In CPVT mice, the constitutive [Na(+)]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs.

SUBMITTER: Willis BC 

PROVIDER: S-EPMC4902321 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia.

Willis B Cicero BC   Pandit Sandeep V SV   Ponce-Balbuena Daniela D   Zarzoso Manuel M   Guerrero-Serna Guadalupe G   Limbu Bijay B   Deo Makarand M   Camors Emmanuel E   Ramirez Rafael J RJ   Mironov Sergey S   Herron Todd J TJ   Valdivia Héctor H HH   Jalife José J  

Circulation 20160511 24


<h4>Background</h4>In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca(2+) dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2(R4496C+/Cx40eGFP)), we tested whether PC intracellular Ca(2+) ([Ca(2+)]i) dysregulation results from a constitutive [Na(+)]i surplus relative to VMs.<h4>Methods and results</h4>Simultaneous optical mapping of voltage and [Ca(2+)]i in CPVT he  ...[more]

Similar Datasets

| S-EPMC4386375 | biostudies-literature
| S-EPMC6206886 | biostudies-literature
| S-EPMC2904954 | biostudies-literature
| S-EPMC6825949 | biostudies-literature
| S-EPMC2515360 | biostudies-literature
| S-EPMC7793240 | biostudies-literature
| S-EPMC5727474 | biostudies-literature
| S-EPMC4831384 | biostudies-other
| S-EPMC7132542 | biostudies-literature
| S-EPMC4939313 | biostudies-literature