Project description:Background: Posterior fossa tumors (PFTs) are a morbid group of central nervous system tumors that most often present in childhood. While early diagnosis is critical to drive appropriate treatment, definitive diagnosis is currently only achievable through invasive tissue collection and histopathological analyses. Machine learning has been investigated as an alternative means of diagnosis. In this systematic review and meta-analysis, we evaluated the primary literature to identify all machine learning algorithms developed to classify and diagnose pediatric PFTs using imaging or molecular data. Methods: Of the 433 primary papers identified in PubMed, EMBASE, and Web of Science, 25 ultimately met the inclusion criteria. The included papers were extracted for algorithm architecture, study parameters, performance, strengths, and limitations. Results: The algorithms exhibited variable performance based on sample size, classifier(s) used, and individual tumor types being investigated. Ependymoma, medulloblastoma, and pilocytic astrocytoma were the most studied tumors with algorithm accuracies ranging from 37.5% to 94.5%. A minority of studies compared the developed algorithm to a trained neuroradiologist, with three imaging-based algorithms yielding superior performance. Common algorithm and study limitations included small sample sizes, uneven representation of individual tumor types, inconsistent performance reporting, and a lack of application in the clinical environment. Conclusions: Artificial intelligence has the potential to improve the speed and accuracy of diagnosis in this field if the right algorithm is applied to the right scenario. Work is needed to standardize outcome reporting and facilitate additional trials to allow for clinical uptake.
Project description:Background5-Hydroxymethylcytosine (5hmC) is a novel epigenetic mark and may be involved in the mechanisms of tumorigenesis and malignant transformation. However, the role of 5hmC in ependymoma, the third most common brain tumor in children, remains unclear. The aim of this study sought to identify the characterization of 5hmC levels in pediatric posterior fossa ependymoma and to evaluate whether 5hmC levels could be a potential factor to predict clinical outcomes.ResultsOur results showed that 5hmC levels were globally decreased in posterior fossa ependymoma compared with normal cerebellum tissues (P < 0.001). Group A posterior fossa ependymomas had higher 5hmC levels than group B tumors (P = 0.007). Moreover, 5hmC levels positively correlated with Ki-67 index in posterior fossa ependymoma (r = 0.428, P = 0.003). Multivariate Cox hazards model revealed that patients with high 5hmC levels (> 0.102%) had worse PFS and OS than patients with lower 5hmC levels (< 0.102%) (PFS: HR = 3.014; 95% CI, 1.040-8.738; P = 0.042; OS: HR = 2.788; 95% CI, 0.974-7.982; P = 0.047).ConclusionsOur findings suggest that loss of 5hmC is an epigenetic hallmark for pediatric posterior fossa ependymoma. 5hmC levels may represent a potential biomarker to predict prognosis in children with posterior fossa ependymoma.
Project description:A subgroup of Posterior fossa ependymomas show reduced H3K27me3 are more invasive, exhibit poor prognosis and epigenetically deregulated genes converge on radial glial factors, suggesting developing cerebellar radial glia as candidate cells-of-origin.
Project description:A subset of genomically silent childhood posterior fossa ependymomas show reduced H3K27me3, global DNA hypomethylation, are more invasive, exhibit poor prognosis and epigenetically deregulated genes converge on radial glial factors, suggesting developing cerebellar radial glia as candidate cells-of-origin.
Project description:Background and purposePediatric posterior fossa tumors often present with hydrocephalus; postoperatively, up to 25% of patients develop cerebellar mutism syndrome. Arterial spin-labeling is a noninvasive means of quantifying CBF and bolus arrival time. The aim of this study was to investigate how changes in perfusion metrics in children with posterior fossa tumors are modulated by cerebellar mutism syndrome and hydrocephalus requiring pre-resection CSF diversion.Materials and methodsForty-four patients were prospectively scanned at 3 time points (preoperatively, postoperatively, and at 3-month follow-up) with single- and multi-inflow time arterial spin-labeling sequences. Regional analyses of CBF and bolus arrival time were conducted using coregistered anatomic parcellations. ANOVA and multivariable, linear mixed-effects modeling analysis approaches were used. The study was registered at clinicaltrials.gov (NCT03471026).ResultsCBF increased after tumor resection and at follow-up scanning (P = .045). Bolus arrival time decreased after tumor resection and at follow-up scanning (P = .018). Bolus arrival time was prolonged (P = .058) following the midline approach, compared with cerebellar hemispheric surgical approaches to posterior fossa tumors. Multivariable linear mixed-effects modeling showed that regional perfusion changes were more pronounced in the 6 children who presented with symptomatic obstructive hydrocephalus requiring pre-resection CSF diversion, with hydrocephalus lowering the baseline mean CBF by 20.5 (standard error, 6.27) mL/100g/min. Children diagnosed with cerebellar mutism syndrome (8/44, 18.2%) had significantly higher CBF at follow-up imaging than those who were not (P = .040), but no differences in pre- or postoperative perfusion parameters were seen.ConclusionsMulti-inflow time arterial spin-labeling shows promise as a noninvasive tool to evaluate cerebral perfusion in the setting of pediatric obstructive hydrocephalus and demonstrates increased CBF following resolution of cerebellar mutism syndrome.
Project description:BackgroundClinicians and machine classifiers reliably diagnose pilocytic astrocytoma (PA) on magnetic resonance imaging (MRI) but less accurately distinguish medulloblastoma (MB) from ependymoma (EP). One strategy is to first rule out the most identifiable diagnosis.ObjectiveTo hypothesize a sequential machine-learning classifier could improve diagnostic performance by mimicking a clinician's strategy of excluding PA before distinguishing MB from EP.MethodsWe extracted 1800 total Image Biomarker Standardization Initiative (IBSI)-based features from T2- and gadolinium-enhanced T1-weighted images in a multinational cohort of 274 MB, 156 PA, and 97 EP. We designed a 2-step sequential classifier - first ruling out PA, and next distinguishing MB from EP. For each step, we selected the best performing model from 6-candidate classifier using a reduced feature set, and measured performance on a holdout test set with the microaveraged F1 score.ResultsOptimal diagnostic performance was achieved using 2 decision steps, each with its own distinct imaging features and classifier method. A 3-way logistic regression classifier first distinguished PA from non-PA, with T2 uniformity and T1 contrast as the most relevant IBSI features (F1 score 0.8809). A 2-way neural net classifier next distinguished MB from EP, with T2 sphericity and T1 flatness as most relevant (F1 score 0.9189). The combined, sequential classifier was with F1 score 0.9179.ConclusionAn MRI-based sequential machine-learning classifiers offer high-performance prediction of pediatric posterior fossa tumors across a large, multinational cohort. Optimization of this model with demographic, clinical, imaging, and molecular predictors could provide significant advantages for family counseling and surgical planning.
Project description:No reliable classification is in clinical use for the therapeutic stratification of children with ependymoma, such that disease risk might be identified and patients treated to ensure a combination of maximal cure rates and minimal adverse therapeutic effects. This study has examined associations between clinicopathologic and cytogenetic variables and outcome in a trial cohort of children with ependymoma, with the aim of defining a practical scheme for stratifying this heterogeneous tumor. Intracranial ependymomas (n = 146) from children treated on the RT1 trial at St. Jude Children's Research Hospital were evaluated for the status of multiple pathological features. Interphase FISH (iFISH) defined the status of loci on chromosomes 1q (EXO1), 6q (LATS1) and 9, including 9p21 (CDKN2A). Data relating to these clinicopathological and cytogenetic variables were compared with survival data in order to model disease risk groups. Extent of surgical resection was a significant determinant of outcome in both supratentorial and infratentorial compartments. Tumor cell density and mitotic count were associated with outcome among children with posterior fossa ependymomas (n = 119). Among pathologic features, only brain invasion was associated with outcome in children with supratentorial ependymomas (n = 27). For posterior fossa tumors, gain of 1q was independently associated with outcome and in combination with clinicopathological variables defined both a two-tier and three-tier system of disease risk. Among children developing posterior fossa ependymomas treated with maximal surgical resection and conformal radiotherapy, key clinicopathological variables and chromosome 1q status can be used to define tiers of disease risk. In contrast, risk factors for pediatric supratentorial tumors are limited to sub-total resection and brain invasion.
Project description:BackgroundThere is minimal literature specific to motor outcomes in children with posterior fossa tumors (PFTs) despite ataxia being a significant problem in this group. This study aims to report children's physical outcomes following management of PFT and determine which factors affect severity of ataxia and functional limitations.MethodsForty-two children aged between 5 and 17 and between 1 and 4 years following surgery for PFT were assessed using the Scale for the Assessment and Rating of Ataxia (SARA), the Brief Ataxia Rating Scale (BARS), and the mobility Pediatric Evaluation of Disability Inventory (PEDI) subscale to determine prevalence and severity of ataxia and a measure of physical function. Analysis was undertaken comparing impact of tumor location, tumor histology, adjuvant treatment, age at diagnosis, presence of preoperative ataxia, and presence of cerebellar mutism syndrome (CMS) on ataxia and physical function scores.ResultsSeventy-one percent of children demonstrated a SARA and BARS score greater than 2. A total of 48% of children had a PEDI-m score greater than 90. There was no correlation between age at diagnosis or preoperative ataxia and assessment scores. There was a significant difference in SARA/BARS and PEDI-mobility scores depending on tumor histology, tumor location, and presence of CMS.ConclusionsA high proportion of children (>1 year) following surgery for PFT continue to present with ataxia. Higher ataxia and lower physical function scores were demonstrated in children with medulloblastoma and midline tumors and those diagnosed with CMS. The high prevalence of ataxia demonstrates the need for further research regarding rehabilitation management in this population.
Project description:Childhood posterior fossa (PF) ependymomas cause substantial morbidity and mortality. These tumors lack recurrent genetic mutations, but a subset of these ependymomas exhibits CpG island (CpGi) hypermethylation [PF group A (PFA)], implicating epigenetic alterations in their pathogenesis. Further, histological grade does not reliably predict prognosis, highlighting the importance of developing more robust prognostic markers. We discovered global H3K27me3 reduction in a subset of these tumors (PF-ve ependymomas) analogous to H3K27M mutant gliomas. PF-ve tumors exhibited many clinical and biological similarities with PFA ependymomas. Genomic H3K27me3 distribution showed an inverse relationship with CpGi methylation, suggesting that CpGi hypermethylation drives low H3K27me3 in PF-ve ependymomas. Despite CpGi hypermethylation and global H3K27me3 reduction, these tumors showed DNA hypomethylation in the rest of the genome and exhibited increased H3K27me3 genomic enrichment at limited genomic loci similar to H3K27M mutant gliomas. Combined integrative analysis of PF-ve ependymomas with H3K27M gliomas uncovered common epigenetic deregulation of select factors that control radial glial biology, and PF radial glia in early human development exhibited reduced H3K27me3. Finally, H3K27me3 immunostaining served as a biomarker of poor prognosis and delineated radiologically invasive tumors, suggesting that reduced H3K27me3 may be a prognostic indicator in PF ependymomas.
Project description:Posterior fossa atypical teratoid rhabdoid tumor (ATRT) is a rare childhood tumor usually associated with a dismal prognosis. Although upfront surgical gross total resection (GTR) has classically been the first line of treatment, new multimodal treatments, including two-stage surgery, are showing promising results in terms of overall survival (OS) and complication rate. We present a case of a 9-month-old child treated with two-staged surgery and chemotherapy. When deemed risky, multimodal treatments, including staged surgeries, can be a safe alternative to reduce surgical mortality and morbidity. At 23 months old, the patient had normal global development and no major impact on quality of life. We, therefore, discuss the most recent advancements from a treatment perspective, including molecular targeting.