Unknown

Dataset Information

0

Preserved neurogenesis in non-demented individuals with AD neuropathology.


ABSTRACT: Rare individuals remain cognitively intact despite the presence of neuropathology usually associated with fully symptomatic Alzheimer's disease (AD), which we refer to as Non-Demented with Alzheimer's disease Neuropathology (NDAN). Understanding the involved mechanism(s) of their cognitive resistance may reveal novel strategies to treat AD-related dementia. In the pursuit of this goal, we determined the number of hippocampal neural stem cells (NSCs) and investigated the expression of several miRNAs in NDAN and AD subjects. Laser-capture microdissection of autopsy human hippocampus DG and qRT-PCR miRNA analyses were combined with immunofluorescence in this study. The number of SOX2(+) NSCs in the DG was significantly increased in NDAN individuals as compared to AD subjects. Further, the prevalence of SOX2(+) NSCs was found to correlate with cognitive capacity. Neurogenesis-regulating miRNAs were decreased in NDAN individuals as compared to AD patients. An increased number of NSCs and new neurons in NDAN individuals is associated with a unique expression of regulating miRNAs and strongly support a role of neurogenesis in mediating, in part, the ability of these individuals to resist the pathological burden of AD.

SUBMITTER: Briley D 

PROVIDER: S-EPMC4906289 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Preserved neurogenesis in non-demented individuals with AD neuropathology.

Briley David D   Ghirardi Valeria V   Woltjer Randy R   Renck Alicia A   Zolochevska Olga O   Taglialatela Giulio G   Micci Maria-Adelaide MA  

Scientific reports 20160614


Rare individuals remain cognitively intact despite the presence of neuropathology usually associated with fully symptomatic Alzheimer's disease (AD), which we refer to as Non-Demented with Alzheimer's disease Neuropathology (NDAN). Understanding the involved mechanism(s) of their cognitive resistance may reveal novel strategies to treat AD-related dementia. In the pursuit of this goal, we determined the number of hippocampal neural stem cells (NSCs) and investigated the expression of several miR  ...[more]

Similar Datasets

| S-EPMC6130411 | biostudies-literature
| S-EPMC2844804 | biostudies-literature
2012-09-06 | GSE26972 | GEO
2007-12-05 | GSE9770 | GEO
2012-09-06 | E-GEOD-26972 | biostudies-arrayexpress
| S-EPMC3606272 | biostudies-literature
| S-EPMC8254948 | biostudies-literature
| S-EPMC3125970 | biostudies-literature
| S-EPMC3057016 | biostudies-literature
| S-EPMC5177470 | biostudies-literature