Unknown

Dataset Information

0

Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency.


ABSTRACT: Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.

SUBMITTER: Olsen RKJ 

PROVIDER: S-EPMC4908180 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency.

Olsen Rikke K J RKJ   Koňaříková Eliška E   Giancaspero Teresa A TA   Mosegaard Signe S   Boczonadi Veronika V   Mataković Lavinija L   Veauville-Merllié Alice A   Terrile Caterina C   Schwarzmayr Thomas T   Haack Tobias B TB   Auranen Mari M   Leone Piero P   Galluccio Michele M   Imbard Apolline A   Gutierrez-Rios Purificacion P   Palmfeldt Johan J   Graf Elisabeth E   Vianey-Saban Christine C   Oppenheim Marcus M   Schiff Manuel M   Pichard Samia S   Rigal Odile O   Pyle Angela A   Chinnery Patrick F PF   Konstantopoulou Vassiliki V   Möslinger Dorothea D   Feichtinger René G RG   Talim Beril B   Topaloglu Haluk H   Coskun Turgay T   Gucer Safak S   Botta Annalisa A   Pegoraro Elena E   Malena Adriana A   Vergani Lodovica L   Mazzà Daniela D   Zollino Marcella M   Ghezzi Daniele D   Acquaviva Cecile C   Tyni Tiina T   Boneh Avihu A   Meitinger Thomas T   Strom Tim M TM   Gregersen Niels N   Mayr Johannes A JA   Horvath Rita R   Barile Maria M   Prokisch Holger H  

American journal of human genetics 20160601 6


Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In  ...[more]

Similar Datasets

| S-EPMC6031868 | biostudies-literature
| S-EPMC4036448 | biostudies-literature
| S-EPMC6234560 | biostudies-literature
| S-EPMC7653163 | biostudies-literature
| S-EPMC6921586 | biostudies-literature
| S-EPMC2946545 | biostudies-literature
| S-EPMC9259400 | biostudies-literature
| S-EPMC1189074 | biostudies-literature
| S-EPMC8006598 | biostudies-literature
| S-EPMC9836253 | biostudies-literature