Unknown

Dataset Information

0

Inherited Disease Genetics Improves the Identification of Cancer-Associated Genes.


ABSTRACT: The identification of biologically significant variants in cancer genomes is critical to therapeutic discovery, but it is limited by the statistical power needed to discern driver from passenger. Independent biological data can be used to filter cancer exomes and increase statistical power. Large genetic databases for inherited diseases are uniquely suited to this task because they contain specific amino acid alterations with known pathogenicity and molecular mechanisms. However, no rigorous method to overlay this information onto the cancer exome exists. Here, we present a computational methodology that overlays any variant database onto the somatic mutations in all cancer exomes. We validate the computation experimentally and identify novel associations in a re-analysis of 7362 cancer exomes. This analysis identified activating SOS1 mutations associated with Noonan syndrome as significantly altered in melanoma and the first kinase-activating mutations in ACVR1 associated with adult tumors. Beyond a filter, significant variants found in both rare cancers and rare inherited diseases increase the unmet medical need for therapeutics that target these variants and may bootstrap drug discovery efforts in orphan indications.

SUBMITTER: Zhao B 

PROVIDER: S-EPMC4909226 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inherited Disease Genetics Improves the Identification of Cancer-Associated Genes.

Zhao Boyang B   Pritchard Justin R JR  

PLoS genetics 20160615 6


The identification of biologically significant variants in cancer genomes is critical to therapeutic discovery, but it is limited by the statistical power needed to discern driver from passenger. Independent biological data can be used to filter cancer exomes and increase statistical power. Large genetic databases for inherited diseases are uniquely suited to this task because they contain specific amino acid alterations with known pathogenicity and molecular mechanisms. However, no rigorous met  ...[more]

Similar Datasets

| PRJNA215657 | ENA
| S-EPMC3073171 | biostudies-literature
| S-EPMC5770800 | biostudies-other
| S-EPMC2811736 | biostudies-literature
| S-EPMC1735576 | biostudies-other
| S-EPMC3254586 | biostudies-literature
| 2002870 | ecrin-mdr-crc
| phs000655.v1.p1 | EGA
| S-EPMC7225421 | biostudies-literature
| S-EPMC6854702 | biostudies-literature