Project description:Vanishing white matter (VWM) is a leukodystrophy that primarily manifests in young children. In this disease, the brain white matter is differentially affected in a predictable pattern with telencephalic brain areas being most severely affected, while others remain allegedly completely spared. Using high-resolution mass spectrometry-based proteomics, we investigated the proteome patterns of the white matter in the severely affected frontal lobe and normal appearing pons in VWM and control cases to identify molecular bases underlying regional vulnerability. By comparing VWM patients to controls, we identified disease-specific proteome patterns. We showed substantial changes in both the VWM frontal and pons white matter at the protein level. Side-by-side comparison of brain region-specific proteome patterns further revealed regional differences. We found that different cell types were affected in the VWM frontal white matter than in the pons. Gene ontology and pathway analyses identified involvement of region specific biological processes, of which pathways involved in cellular respiratory metabolism were overarching features. In the VWM frontal white matter, proteins involved in glycolysis/gluconeogenesis and metabolism of various amino acids were decreased compared to controls. By contrast, in the VWM pons white matter, we found a decrease in proteins involved in oxidative phosphorylation. Taken together, our data show that brain regions are affected in parallel in VWM, but to different degrees. We found region-specific involvement of different cell types and discovered that cellular respiratory metabolism is likely to be differentially affected across white matter regions in VWM. These region-specific changes help explain regional vulnerability to pathology in VWM.
Project description:Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies.
Project description:ObjectiveTo comprehensively describe the natural history of vanishing white matter (VWM), aiming at improving counseling of patients/families and providing natural history data for future therapeutic trials.MethodsWe performed a longitudinal multicenter study among 296 genetically confirmed VWM patients. Clinical information was obtained via disease-specific clinical questionnaire, Health Utilities Index and Guy's Neurological Disability Scale assessments, and chart review.ResultsFirst disease signs occurred at a median age of 3 years (mode = 2 years, range = before birth to 54 years); 60% of patients were symptomatic before the age of 4 years. The nature of the first signs varied for different ages of onset. Overall, motor problems were the most common presenting sign, especially in children. Adolescent and adult onset patients were more likely to exhibit cognitive problems early after disease onset. One hundred two patients were deceased. Multivariate Cox regression analysis revealed a positive relation between age at onset and both preservation of ambulation and survival. Absence of stress-provoked episodes and absence of seizures predicted more favorable outcome. In patients with onset before 4 years, earlier onset was associated with more severe disability and higher mortality. For onset from 4 years on, disease course was generally milder, with a wide variation in severity. There were no significant differences for sex or for the 5 eIF2B gene groups. The results confirm the presence of a genotype-phenotype correlation.InterpretationThe VWM disease spectrum consists of a continuum with extremely wide variability. Age at onset is a strong predictor for disease course. Ann Neurol 2018;84:274-288.
Project description:Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies.
Project description:We aimed at gaining more insight into the molecular basis of VWM pathogenesis. Therefore we investigated protein expression patterns in the 2b5ho mouse model using a data-independent mass spectrometry-based quantitative proteomic analysis. The proteome of 4 different brain regions was analyzed at different time points of disease progression. Brain regions were selected based on their regional vulnerability to VWM, and included the cerebellum, corpus callosum, cortex, and brainstem. Commonalities and differences in proteome changes between 2b5ho mouse and VWM patient brains were assessed to determine disease-relevant protein changes during disease development and progression.
Project description:Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. Neuropathology includes lack of reactive gliosis, paucity of myelin, and axonal abnormalities. Alteration in proteins involved in cellular metabolism has also been implicated in the disease. It, however, remains unclear which factors contribute to VWM pathogenesis. Here, we aimed at gaining insight into the basis of VWM pathogenesis using the 2b5ho mouse model of VWM. We first investigated the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from post mortem VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we identified region-specific protein changes associated with disease development and progression. We showed that the proteome in the cerebellum and cortex of 2b5ho mice was already deregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after onset of pathology. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region throughout the disease course. Gene ontology overrepresentation analysis revealed that proteome changes observed in 2b5ho mouse brains reflect alterations in features well-known in VWM. Side-by-side comparison of the 2b5ho mouse and VWM patient brain proteomes revealed that part of protein changes were the same as in VWM patients. These could represent relevant changes that contribute to the disease or even drive its progression in VWM patients. Taken together, we show that the proteome in the brain of 2b5ho mice is affected in a region-specific and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, and provides a spatiotemporal proteome resource to study aspects of VWM pathogenesis. This resource highlights alterations presenting from early to late disease stages, and those that possibly drive disease progression.
Project description:Vanishing white matter (VWM) disease is a genetic leukoencephalopathy linked to mutations in the eukaryotic translation initiation factor 2B. It is a disease of infants, children, and adults who experience a slowly progressive neurologic deterioration with episodes of rapid clinical worsening triggered by stress and eventually leading to death. Characteristic neuropathologic findings include cystic degeneration of the white matter with scarce reactive gliosis, dysmorphic astrocytes, and paucity of myelin despite an increase in oligodendrocytic density. To assess whether a defective maturation of macroglia may be responsible for the feeble gliosis and lack of myelin, weinvestigated the maturation status of astrocytes and oligodendrocytes in the brains of 8 VWM patients, 4 patients with other white matter disorders and 6 age-matched controls with a combination of immunocytochemistry, histochemistry, scratch-wound assays, Western blot, and quantitative polymerase chain reaction. We observed increased proliferation and a defect in the maturation of VWM astrocytes. They show an anomalous composition of their intermediate filament network with predominance of the δ-isoform of the glial fibrillary acidic protein and an increase in the heat shock protein αB-crystallin, supporting the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM. We also demonstrated a significant increase in numbers of premyelinating oligodendrocyte progenitors in VWM, which may explain the coexistence of oligodendrocytosis and myelin paucity in the patients' white matter.
Project description:VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.