Mda-7/IL-24 Induces Cell Death in Neuroblastoma through a Novel Mechanism Involving AIF and ATM.
Ontology highlight
ABSTRACT: Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in preclinical animal models, and in a phase I clinical trial in patients with advanced cancers without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting endoplasmic reticulum stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival, and angiogenesis. To enhance cancer-selective expression and targeted anticancer activity of mda-7/IL-24, we created a tropism-modified cancer terminator virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24 We now show that Ad.5/3-CTV induces profound neuroblastoma antiproliferative activity and apoptosis in a caspase-3/9-independent manner, both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis-inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased ?-H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small-molecule inhibitors that attenuated PARP cleavage by inhibiting ?-H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM, and ?-H2AX. Cancer Res; 76(12); 3572-82. ©2016 AACR.
SUBMITTER: Bhoopathi P
PROVIDER: S-EPMC4911293 | biostudies-literature | 2016 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA