Project description:The emergence of the human 2009 pandemic H1N1 (H1N1pdm) virus from swine populations refocused public and scientific attention on swine as an important source of influenza A viruses bearing zoonotic potential. Widespread and year-round circulation of at least four stable lineages of porcine influenza viruses between 2009 and 2012 in a region of Germany with a high-density swine population is documented here. European avian influenza virus-derived H1N1 (H1N1av) viruses dominated the epidemiology, followed by human-derived subtypes H1N2 and H3N2. H1N1pdm viruses and, in particular, recently emerging reassortants between H1N1pdm and porcine HxN2 viruses (H1pdmN2) were detected in about 8% of cases. Further reassortants between these main lineages were diagnosed sporadically. Ongoing diversification both at the phylogenetic and at the antigenic level was evident for the H1N1av lineage and for some of its reassortants. The H1avN2 reassortant R1931/11 displayed conspicuously distinct genetic and antigenic features and was easily transmitted from pig to pig in an experimental infection. Continuing diverging evolution was also observed in the H1pdmN2 lineage. These viruses carry seven genome segments of the H1N1pdm virus, including a hemagglutinin gene that encodes a markedly antigenically altered protein. The zoonotic potential of this lineage remains to be determined. The results highlight the relevance of surveillance and control of porcine influenza virus infections. This is important for the health status of swine herds. In addition, a more exhaustive tracing of the formation, transmission, and spread of new reassortant influenza A viruses with unknown zoonotic potential is urgently required.
Project description:The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-?1), caspase-8, and heat shock protein 90 alpha (HSP90?) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.
Project description:Porcine epidemic diarrhea virus (PEDV) has been detected sporadically in Italy since the 1990s. We report the phylogenetic relationship of swine enteric coronaviruses collected in Italy during 2007-2014 and identify a drastic shift in PEDV strain variability and a new swine enteric coronavirus generated by recombination of transmissible gastroenteritis virus and PEDV.
Project description:This study examined if pigs in a Porcine circovirus disease (PCVD)-affected herd (n = 100) had shed more Porcine circovirus-2 (PCV-2) in their feces than pigs in a PCVD-nonaffected herd (n = 101), and if differences in shedding among production stages within and between the herds existed. The PCV-2 shedding was quantified by real-time polymerase chain reaction. The highest median PCV-2 shedding was found in the nursery of the PCVD-affected herd and in the grower of the PCVD-nonaffected herd. The PCV-2 shedding was significantly higher in earlier stages (newly weaned, nursery, and pregrower) in the PCVD-affected herd (Wilcoxon rank sum; P < 0.001) compared with the PCVD-nonaffected herd. Porcine circovirus-2 DNA was not detected in a significant proportion of lactating sows (parity > or = 3) in the PCVD-nonaffected herd (Fisher's exact test; P = 0.001). The results of this study suggest there may be an association between the presence of PCV-2 in the feces of lactating sows and increased PCV-2 shedding in younger pigs.
Project description:We identified from suckling piglets with diarrhea in China a new bat-HKU2-like porcine coronavirus (porcine enteric alphacoronavirus). The GDS04 strain of this coronavirus shares high aa identities (>90%) with the reported bat-HKU2 strains in Coronaviridae-wide conserved domains, suggesting that the GDS04 strain belongs to the same species as HKU2.
Project description:We designed a long-term culture system for porcine intestinal organoids from intestinal crypt or single Lgr5+ stem cells by combining previously defined insights in the growth requirements of intestinal epithelium of human and mouse. We showed that long-term cultured swine intestinal organoids were expanded in vitro more than six months at least and maintained the potential to differentiate into different types of cells. These organoids were successfully infected with porcine enteric coronavirus including porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV). RNA-seq analysis showed that robust induction of transcripts associated with antiviral signaling in response to enteric coronavrius infection, including a number of interferon-stimulated genes and cytokines. Moreover, gene set enrichment analysis indicated that PEDV infection could suppress immune response in organoids. This 3D intestinal organoid model offers a long-term, renewable resource for investigating porcine intestinal infections with a variety of pathogens.
Project description:Fur seal feces-associated circular ssDNA virus (FSfaCV) was discovered in a pig for the first time in Japan using a next-generation sequencer with duplex-specific nuclease. Full genome of the virus showed approximately 92% similarity to FSfaCVs from New Zealand fur seals. Furthermore, we investigated the prevalence of the ssDNA virus in 85 piglets in Japan, and 65 piglets were positive (76%) for the virus.
Project description:During a severe outbreak of diarrhoea and vomiting in a pig herd in Central Eastern Europe, faecal samples were tested positive for porcine epidemic diarrhoea virus (PEDV) and negative for transmissible gastroenteritis virus (TGEV) using a commercial RT-qPCR assay that can detect both of these coronaviruses. However, further analyses, using other TGEV- and PEDV-specific RT-qPCR assays, provided results inconsistent with infection by either of these viruses. Sequencing of an amplicon (ca. 1.6 kb), generated by an RT-PCR specific for the PEDV S-gene, indicated a very close similarity (ca. 99% identity) to recently described chimeric viruses termed swine enteric coronaviruses (SeCoVs). These viruses (with an RNA genome of ca. 28 kb) were first identified in Italy in samples from 2009 but have not been detected there since 2012. A closely related virus was detected in archived samples in Germany from 2012, but has not been detected subsequently. Building on the initial sequence data, further amplicons were generated and over 9 kb of sequence corresponding to the 3'-terminus of the new SeCoV genome was determined. Sequence comparisons showed that the three known SeCoVs are ?98% identical across this region and contain the S-gene and 3a sequences from PEDV within a backbone of TGEV, but the viruses are clearly distinct from each other. It is demonstrated, for the first time, that pigs from within the SeCoV-infected herd seroconverted against PEDV but tested negative in a TGEV-specific ELISA that detects antibodies against the S protein. These results indicate that SeCoV is continuing to circulate in Europe and suggest it can cause a disease that is very similar to PED. Specific detection of the chimeric SeCoVs either requires development of a new diagnostic RT-qPCR assay or the combined use of assays targeting the PEDV S-gene and another part of the TGEV genome.
Project description:Since outbreaks of porcine epidemic diarrhea virus (PEDV) in the United States in 2013, explosive outbreaks of PED in South Korea have infected all age groups of pigs in 2014-2015year. This study analyzed a large collection of the Spike protein coding gene to infer the spatial-temporal diffusion history of PEDV. The studying results suggested that PEDVs in Korea belonged to different genogroups. While classical G1 was continuingly circulating between provinces of Korea, the pandemic G2a were recently introduced from China and USA. By the application of Bayesian phylogeographical analysis, this study demonstrated the spatial-temporal transmission of PEDVs within Korea. Of the recent emerged G2a viruses, J3142 strains showed potential recombination breakpoint (376-2,143nt) of S1 gene between KNU1303_Korea strain_G2a (KJ451046) and 45RWVCF0712_Thailand strain_G2b (KF724935). The pandemic G2a virus was partial neutralized by the antibodies invoked by the G1- based PED vaccine virus.