Unknown

Dataset Information

0

Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.


ABSTRACT: The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.

SUBMITTER: Loureiro I 

PROVIDER: S-EPMC4918886 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

Loureiro Iñigo I   Escorial María-Concepción MC   Chueca María-Cristina MC  

PloS one 20160623 6


The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen so  ...[more]

Similar Datasets

| S-EPMC3689349 | biostudies-other
| S-EPMC3186236 | biostudies-literature
| S-EPMC10877012 | biostudies-literature
| S-EPMC4974277 | biostudies-literature
| S-EPMC5810296 | biostudies-literature
| S-EPMC4507778 | biostudies-literature
| PRJNA799089 | ENA
| S-EPMC9091218 | biostudies-literature
| S-EPMC8467281 | biostudies-literature
| S-EPMC9906911 | biostudies-literature