Unknown

Dataset Information

0

Differential Contribution of Malic Enzymes during Soybean and Castor Seeds Maturation.


ABSTRACT: Malic enzymes (ME) catalyze the decarboxylation of malate generating pyruvate, CO2 and NADH or NADPH. In some organisms it has been established that ME is involved in lipids biosynthesis supplying carbon skeletons and reducing power. In this work we studied the MEs of soybean and castor, metabolically different oilseeds. The comparison of enzymatic activities, transcript profiles and organic acid contents suggest different metabolic strategies operating in soybean embryo and castor endosperm in order to generate precursors for lipid biosynthesis. In castor, the malate accumulation pattern agrees with a central role of this metabolite in the provision of carbon to plastids, where the biosynthesis of fatty acids occurs. In this regard, the genome of castor possesses a single gene encoding a putative plastidic NADP-ME, whose expression level is high when lipid deposition is active. On the other hand, NAD-ME showed an important contribution to the maturation of soybean embryos, perhaps driving the carbon relocation from mitochondria to plastids to support the fatty acids synthesis in the last stages of seed filling. These findings provide new insights into intermediary metabolism in oilseeds and provide new biotechnological targets to improve oil yields.

SUBMITTER: Gerrard Wheeler MC 

PROVIDER: S-EPMC4922584 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential Contribution of Malic Enzymes during Soybean and Castor Seeds Maturation.

Gerrard Wheeler Mariel Claudia MC   Arias Cintia Lucía CL   Righini Silvana S   Badia Mariana Beatriz MB   Andreo Carlos Santiago CS   Drincovich María Fabiana MF   Saigo Mariana M  

PloS one 20160627 6


Malic enzymes (ME) catalyze the decarboxylation of malate generating pyruvate, CO2 and NADH or NADPH. In some organisms it has been established that ME is involved in lipids biosynthesis supplying carbon skeletons and reducing power. In this work we studied the MEs of soybean and castor, metabolically different oilseeds. The comparison of enzymatic activities, transcript profiles and organic acid contents suggest different metabolic strategies operating in soybean embryo and castor endosperm in  ...[more]

Similar Datasets

| S-EPMC7931715 | biostudies-literature
2008-06-17 | E-GEOD-8112 | biostudies-arrayexpress
| S-EPMC2662052 | biostudies-literature
| S-EPMC5684206 | biostudies-literature
2019-08-02 | GSE135268 | GEO
2019-08-02 | GSE135267 | GEO
2019-08-02 | GSE135265 | GEO
| S-EPMC7902834 | biostudies-literature
| S-EPMC3561500 | biostudies-literature
| S-EPMC5507495 | biostudies-literature