Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix.
Ontology highlight
ABSTRACT: Programmed death-ligand 1 (PD-L1) is expressed in various immune cells and tumor cells, and is able to bind to PD-1 on T lymphocytes, thereby inhibiting their function. At present, the PD-1/PD-L1 axis is a major immunotherapeutic target for checkpoint inhibition in various cancer types, but information on the clinical significance of PD-L1 expression in cervical cancer is largely lacking. Here, we studied PD-L1 expression in paraffin-embedded samples from two cohorts of patients with cervical cancer: primary tumor samples from cohort I (squamous cell carcinoma, n=156 and adenocarcinoma, n=49) and primary and paired metastatic tumor samples from cohort II (squamous cell carcinoma, n=96 and adenocarcinoma, n=31). Squamous cell carcinomas were more frequently positive for PD-L1 and also contained more PD-L1-positive tumor-associated macrophages as compared with adenocarcinomas (both P<0.001). PD-L1-positive tumor-associated macrophages were found to express CD163 and/or CD14 by triple fluorescent immunohistochemistry, demonstrating an M2-like phenotype. Interestingly, disease-free survival (P=0.022) and disease-specific survival (P=0.046) were significantly poorer in squamous cell carcinoma patients with diffuse PD-L1 expression as compared with patients with marginal PD-L1 expression (i.e., on the interface between tumor and stroma) in primary tumors. Disease-specific survival was significantly worse in adenocarcinoma patients with PD-L1-positive tumor-associated macrophages compared with adenocarcinoma patients without PD-L1-positive tumor-associated macrophages (P=0.014). No differences in PD-L1 expression between primary tumors and paired metastatic lymph nodes were detected. However, PD-L1-positive immune cells were found in greater abundance around the metastatic tumors as compared with the paired primary tumors (P=0.001 for squamous cell carcinoma and P=0.041 for adenocarcinoma). These findings point to a key role of PD-L1 in immune escape of cervical cancer, and provide a rationale for therapeutic targeting of the PD-1/PD-L1 pathway.
SUBMITTER: Heeren AM
PROVIDER: S-EPMC4931542 | biostudies-literature | 2016 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA