Unknown

Dataset Information

0

Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway.


ABSTRACT: Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway.

SUBMITTER: Huang C 

PROVIDER: S-EPMC4933928 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway.

Huang Chunling C   Zhang Yuan Y   Kelly Darren J DJ   Tan Christina Y R CY   Gill Anthony A   Cheng Delfine D   Braet Filip F   Park Jin-Sung JS   Sue Carolyn M CM   Pollock Carol A CA   Chen Xin-Ming XM  

Scientific reports 20160706


Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mit  ...[more]

Similar Datasets

| S-EPMC3190721 | biostudies-literature
| S-EPMC5833650 | biostudies-literature
| S-EPMC5520711 | biostudies-literature
| S-EPMC2794731 | biostudies-literature
| S-EPMC3725544 | biostudies-literature
| S-EPMC4669930 | biostudies-literature
| S-EPMC3869934 | biostudies-literature
| S-EPMC8496726 | biostudies-literature
| S-EPMC8367537 | biostudies-literature
| S-EPMC5798358 | biostudies-literature