Unknown

Dataset Information

0

Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor.


ABSTRACT: Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10?ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17?-oestradiol (E2). Exposure to BPA or E2 (10?ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10?ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual.

SUBMITTER: Choi BI 

PROVIDER: S-EPMC4935887 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor.

Choi Bom-Ie BI   Harvey Alexandra J AJ   Green Mark P MP  

Scientific reports 20160707


Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at env  ...[more]

Similar Datasets

| S-EPMC10177215 | biostudies-literature
| S-EPMC6661109 | biostudies-literature
| S-EPMC5739418 | biostudies-literature
| S-EPMC3722857 | biostudies-literature
| S-EPMC3632247 | biostudies-literature
| S-EPMC44998 | biostudies-other
2010-04-15 | GSE12901 | GEO
| S-EPMC5578674 | biostudies-literature
| S-EPMC10993494 | biostudies-literature
| S-EPMC3681317 | biostudies-literature